Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2532
DC FieldValueLanguage
dc.contributor.authorallBarani, S.; 1Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova,en
dc.contributor.authorallFerretti, G.; 1Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova,en
dc.contributor.authorallMassa, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallSpallarossa, D.; 1Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova,en
dc.date.accessioned2007-09-20T13:47:12Zen
dc.date.available2007-09-20T13:47:12Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2532en
dc.description.abstractIn this paper, waveform similarity analysis is adapted and implemented in a declustering procedure to identify foreshocks and aftershocks, to obtain instrumental catalogues that are cleaned of dependent events and to perform an independent check of the results of traditional declustering techniques. Unlike other traditional declustering methods (i.e. windowing techniques), the application of cross-correlation analysis allows definition of groups of dependent events (multiplets) characterized by similar location, fault mechanism and propagation pattern. In this way the chain of intervening related events is led by the seismogenetic features of earthquakes. Furthermore, a time-selection criterion is used to define time-independent seismic episodes eventually joined (on the basis of waveform similarity) into a single multiplet. The results, obtained applying our procedure to a test data set, show that the declustered catalogue is drawn by the Poisson distribution with a degree of confidence higher than using the Gardner and Knopoff method. The declustered catalogues, applying these two approaches, are similar with respect to the frequency–magnitude distribution and the number of earthquakes. Nevertheless, the application of our approach leads to declustered catalogues properly related to the seismotectonic background and the reology of the investigated area and the success of the procedure is ensured by the independence of the results on estimated location errors of the events collected in the raw catalogue.en
dc.language.isoEnglishen
dc.relation.ispartofGeophys. J. Int.en
dc.subjectdeclusteringen
dc.subjectdependent eventsen
dc.subjectstatistical methodsen
dc.subjectwaveform analysisen
dc.titleThe waveform similarity approach to identify dependent events in instrumental seismic cataloguesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1111/j.1365-246X.2006.03207.xen
dc.relation.referencesAster, R.C. & Scott, J., 1993. Comprehensive characterization of waveform similarity in microearthquake datasets, Bull. Soc. Am., 83, 1307–1314. Augliera, P., Cattaneo, M. & Eva, C., 1995. Seismic multiplet analysis and its implication in seismotectonics, Tectonophysics, 248, 219–234. Cattaneo, M., Augliera, P., Spallarossa, D. & Eva, C., 1997. Reconstruction of a seismogenetic structures by multiplet analysis: an example ofWestern Liguria, Italy, Bull. seism. Soc. Am., 87, 971–986. Cattaneo, M., Augliera, P., Spallarossa, D. & Lanza, V., 1999. A waveform similarity approach to investigate seismicity patterns, Natural Hazards, 19, 123–138. Console, R. & Di Giovanbattista, R., 1987. Local earthquake relative locations by digital record, Phys. Earth planet. Inter., 47, 43–49. Console, R., Lombardi, A.M. & Murru, M., 2003. Bath’s law and selfsimilarity of earthquakes, J. geophys. Res., 108(B2), 2128. Cornell, C.A., 1968. Engineering seismic risk analysis, Bull. seism. Soc. Am., 58, 1583–1606. Deichmann,N.&Garcia-Fernandez, M., 1992. Rupture geometry from highprecision relative hypocenter locations of micro-earthquake clusters, Geophys. J. Int., 110, 501–517. Dodge, D., Beroza, G.C. & Ellsworth, W.L., 1995. Evolution of the 1992 Landers, California, foreshock sequence and its implications for earthquake nucleation, J. geophys. Res., 100, 9865–9880. Ferretti, G., Massa, M. & Solarino, S., 2005. An improved method for the identification of seismic families: application to the Garfagnana- Lunigiana area (Italy), Bull. seism. Soc. Am., 95(5), 1903–1915. Frankel, A., 1995. Mapping seismic hazard in the Central and Eastern United States, Seism. Res. Lett., 66(4), 8–21. Frechet, J., 1985. Sismogenese et doublets sismiques, These d’Etat, Universite Scientifique et Medicale de Grenoble, 206. Fremont, M.J.&Malone,D., 1987. High precision relative locations of earthquakes at Mount St. Helens, Washington, J. geophys. Res., 92, 10 223– 10 236. Gardner, J.K.&Knopoff, L., 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?, Bull. seism. Soc. Am., 64, 1363–1367. Geller, R.J. & Mueller, C.S., 1980. Four similar earthquakes in central California, Geophys. Res. Lett., 7, 821–824. Godano, C. & Caruso, V., 1995. Multifractal analysis of earthquake catalogues, Geophys. J. Int., 121, 385–392. Godano, C., Tosi, P., Derubeis, V. & Augliera, P., 1999. Scaling properties of the spatio-temporal distribution of earthquakes: a multifractal approach applied to a Californian catalogue, Geophys. J. Int., 136, 99– 108. Got, J., Fr´echet, J. & Klein, F.W., 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea, J. geophys. Res., 99, 15 375–15 386. Gruppo di lavoro CPTI., 2004. Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04). INGV, Bologna. http://emidius.mi.ingv.it/CPTI/ Kanamori, H. & Anderson, D.L., 1975. Theoretical basis of some empirical relations in seismology, Bull. seism. Soc. Am., 65, 1073–1095. Keilis-Borok, V.I., Knopoff, L. & Rotwain, I.M., 1982. Burst of aftershocks, long term precursors of strong earthquakes, Nature, 283, 259–263 pp. Knopoff, L., 1964. Statistics of earthquakes in Southern California, Bull. seism. Soc. Am., 54, 1871–1873. Lapajne, J., ˇSket Motnikar, B. & Zupanˇciˇc, P. , 2003. Probabilistic seismic hazard assessment methodology for distributed seismicity, Bull. seism. Soc. Am., 93, 2502–2515. Massa, M., Eva, E., Spallarossa, D. & Eva, C., 2006. Detection of earthquake clusters on the basis of waveform similarity: an application in the Monferrato Region (Piedmont, Italy), J. Seismol., 10, 1–22. Maurer, H. & Deichmann, N., 1995. Micro-earthquake cluster detection based on waveform similarities, with an application to the western Swiss Alps, Gephys. J. Int., 123, 588–600. O¨ ncel, A.O. & Alptekin, O¨ ., 1999. Effects of aftershocks on earthquake hazard estimation: an example from the North Anatolian fault zone, Natural Hazards, 19, 1–11. Press, W.H., Flannery, P.B., Teukolsky, S.A. & Wetterling, W.T., 1988. Numerical Recipes in C, The Art of Scientific Computing, Cambridge University Press, Cambridge, UK. Poupinet, G., Ellsworth,W.L. & Fr´echet, J., 1984. Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaverals Fault, California, J. geophys. Res., 89, 5719–5731. Reasenberg, P., 1985. Second-order moment of Central California seismicity, 1969–1982, J. geophys. Res., 90, 5478–5495. Reasenberg, P.A.&Jones, L.M., 1989. Earthquake Hazard after a main shock in California, Science, 243, 1173–1176. Rowe, C.A., Aster, R.C., Borchers, B. & Young, C.J., 2002. An automatic, adaptive algorithm for refining phase picks in large seismic datasets, Bull. seism. Soc. Am., 92, 1660–1674. Savage, M.K.&Depolo, D.M., 1993. Foreshock probabilities in theWestern Great-Basin Eastern Sierra Nevada, Bull. seism. Soc. Am., 83, 1910–1938. Scarfı , L., Langer, H. & Gresta, S., 2003. High-precision relative locations of two micro-earthquake clusters in South-eastern Sicily, Italy, Bull. seism. Soc. Am., 93, 1479–1497. Schaff, D.P., Bokelmann, G.H.R., Beroza, G.C.,Waldhauser, F.&Ellsworth, W.L., 2002. High resolution image of Calaverals Fault seismicity, J. geophys. Res., 107(B9), 2186, doi:10.1029/2001JB000633. Schaff, D.P., Bokelmann, G.H.R., Ellsworth, W.L., Zanzerkia, E., Waldhauser, F. & Beroza, G.C., 2004. Optimizing correlation technique for improved earthquake location, Bull. seism. Soc. Am., 94,2, 705–721. Shearer, P.M., 1997. Improving local earthquake locations using the L1 norm and waveformcross correlation: application to the Whittier Narrows, California, aftershock sequence, J. geophys. Res., 102, 8269–8283. Solarino, S., Ferretti, G. & Eva, C., 2002. Seismicity of Garfagnana- Lunigiana (Tuscany, Italy) as recorded by a network of semi-broad-band instruments, J. Seismol., 6, 145–152. Taylor, J.R., 1986. Introduzione all’analisi degli errori, Edizioni Zanichelli. Tsujiura, M., 1983. Characteristic frequencies for earthquake families and their tectonic implications: evidence from earthquake swarms in the Kanto District, Japan, Pure appl. Geophys., 121, 574–600. Waldhauser, F. & Ellsworth, W., 2000. A double-difference Earthquake location Algorithm: method and application to the northern Hayward fault, California, Bull. seism. Soc. Am., 90, 1353–1368. Waldhauser, F., Ellsworth, W.L. & Cole, A., 1999. Slip-parallel seismic lineations along the northern Hayward fault, California, Geophys. Res. Lett., 26, 3525–3528.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBarani, S.en
dc.contributor.authorFerretti, G.en
dc.contributor.authorMassa, M.en
dc.contributor.authorSpallarossa, D.en
dc.contributor.department1Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova,en
dc.contributor.department1Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.department1Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipTeRis Università di Genova-
crisitem.author.deptUniversità di Genova - Genova - Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptDipTeRis Università di Genova-
crisitem.author.orcid0000-0003-0696-2035-
crisitem.author.orcid0000-0002-8021-3908-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
692.pdf388.45 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

14
checked on Feb 10, 2021

Page view(s) 50

168
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric