Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2488
DC FieldValueLanguage
dc.contributor.authorallCamarda, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallValenza, M.; Dipartimento di Chimica e Fisica della Terra ed Applicazioni, Palermo, Italyen
dc.date.accessioned2007-09-18T13:06:47Zen
dc.date.available2007-09-18T13:06:47Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2488en
dc.description.abstractIn order to evaluate the influence of soil permeability on soil CO2 flux measurements performed with the dynamic concentration method, several tests were carried out using soils characterized by different permeability values and flow rates. A special device was assembled in the laboratory to create a one-dimensional gas flow through a soil of known permeability. Using the advective-diffusion theory, a physical model to predict soil concentration gradients was also developed. The calculated values of CO2 concentrations at different depths were compared with those measured during the tests and a good agreement was found. Four soils with different gas permeability (3.6 10 2 to 1.23 102 mm2) were used. The CO2 flux values were varied from 0.1 kg m 2 d 1 up to 22 kg m 2 d 1. On the basis of these results, a new empirical equation for calculating very accurate soil CO2 flux from dynamic concentration and soil permeability values was proposed. As highlighted by the experimental data, the influence of soil permeability on CO2 flux measurements depends on various factors, of which the flow rate of the suction pump is the most important. Setting low values for the pumping flux (0.4–0.8 L min 1), the mean error due to soil permeability was lower than 5%. Finally, the method was tested by measuring the CO2 flux in a grid of 48 sampling sites on Vulcano (Aeolian Islands, Italy), and the global error, affecting the CO2 flux measurements in a real application, was evaluated.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/ 111 (2006)en
dc.subjectCO2 flux measurementsen
dc.subjectvolcanic areasen
dc.titleCO2 flux measurements in volcanic areas using the dynamic concentration methods: the influence of the soil permeabilityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB05202en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1029/2005JB003898en
dc.relation.referencesAllard, P., et al. (1991), Eruptive and diffuse emission of CO2 from Mount Etna, Nature, 351, 387–391. Anderson, J. M. (1973), Carbon dioxide evolution from two temperate deciduous woodland soils, J. Appl. Ecol., 10, 361– 378. Badalamenti, B., S. Gurrieri, S. Hauser, and M. Valenza (1988), Ground CO2 output in the island of Vulcano during the period 1984– 1988: Gas hazard and volcanic activity surveillance implications, Rend. Soc. Ital. Mineral. Petrol., 43, 893– 899. Badalamenti, B., S. Gurrieri, P. M. Nuccio, and M. Valenza (1991), Gas hazard on Vulcano island, Nature, 350, 26– 27. Baubron, J. C., P. Allard, and J. P. Toutain (1990), Diffuse volcanic emissions of carbon dioxide from Vulcano island, Italy, Nature, 344, 51– 53. Bekku, Y., H. Koizumi, T. Nakadai, and H. Iwaki (1955), Measurement of soil respiration using close chamber method: An IRGA technique, Ecol. Res., 10, 369– 373. Camarda, M., S. Gurrieri, and M. Valenza (2006), In situ permeability measurements based on a radial gas advection model: Relationships between soil permeability and diffuse CO2 degassing in volcanic areas, Pure Appl. Geophys., in press. Campbell, G. S. (Eds.) (1985), Soil Physics With Basic: Transport Models for Soil-Plant Systems, 150 pp., Elsevier, New York. Chiodini, G., and F. Frondini (2001), Carbon dioxide degassing from Albani Hillis volcanic region, central Italy, Chem. Geol., 177, 67– 83. Chiodini, G., R. Cioni, M. Guidi, L. Marini, and B. Raco (1998), Soil CO2 flux measurements in volcanic and geothermal areas, Appl. Geochem., 13, 543– 552. Ciotoli, G., M. Guerra, S. Lombardi, and E. Vittori (1998), Soil gas survey for tracing seismogenic faults: A case-study in the Fucino basin (central Italy), J. Geophys. Res., 103, 23,781– 23,794. Ciotoli, G., M. Della Seta, M. Del Monte, P. Fredi, S. Lombardi, E. L. Palmieri, and F. Pugliese (2003), Morphological and geochemical evidence of neotectonics in the volcanic area of Monti Vulsini (Latium, Italy), Q. Inter., 101– 102, 103– 113. De Gregorio, S., I. S. Diliberto, S. Giammanco, S. Gurrieri, and M. Valenza (2002), Tectonic control over large-scale diffuse degassing in eastern Sicily (Italy), Geofluids, 2, 273–284. Diliberto, I. S., S. Gurrieri, and M. Valenza (1993), Vulcano: Gas geochemistry. CO2 flux from the ground, Acta Vulcanol., 3, 272–273. Diliberto, I. S., S. Gurrieri, and M. Valenza (2002), Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Island, Italy) during the period 1984 – 1994, Bull. Volcanol., 64, 219– 228. Evans, D. D., and D. Kirkham (1949), Measurement of the air permeability of soil in situ, Soil. Sci. Soc. Am. Proc., 14, 65–73. Fang, C., and J. B. Moncrieff (1999), A model for soil CO2 production and transport 1: Model development, Agric. Forest. Meteorol., 95, 225– 236. Gerlach, T. M., M. P. Doukas, K. A. McGee, and R. Kessler (2001), Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California, 1995– 1999, Chem. Geol., 177, 101– 116. Giammanco, S., S. Gurrieri, and M. Valenza (1995), Soil CO2 degassing on Mt. Etna (Sicily) during the period 1989– 1993: Discrimination between climatic and volcanic influences, Bull. Volcanol., 57, 52–60. Giammanco, S., S. Gurrieri, and M. Valenza (1998), Anomalous soil CO2 degassing in relation to faults and eruptive fissure on Mount Etna (Sicily, Italy), Bull. Volcanol., 60, 252– 259. Grover, B. L. (1955), Simplified air permeameters for soil in place, Soil Sci. Soc. Am. Proc., 19, 414– 418. Guerra, M., and S. Lombardi (2001), Soil-gas method for tracing neotectonic faults in clay basins: The Pisticci field (southern Italy), Tectonophysics, 339, 511 – 522. Gurrieri, S., and M. Valenza (1988), Gas transport in natural porous medium: a method for measuring soil CO2 flows from the ground in volcanic and geothermal areas, Rend. Soc. Ital. Mineral. Petrol., 43, 1151– 1158. Isachenko, V., V. Osipova, and A. Sukomel (Eds.) (1980), Heat Transfer, 493 pp. Mir, Moscow. Kirita, H. (1971), Re-examination of the absorption method of measuring soil respiration under field conditions. IV. An improved absorption method using a disc of plastic sponge as absorbent holder, Jpn. J. Ecol., 21, 119–127. Klinkenberg, L. J. (1941), The permeability of porous media to liquids and gases, Drilling and Production Practices, pp. 200–213, Am. Phys. Inst., College Park, Md. Lunderghard, H. (1927), Carbon dioxide evolution of soil and crop growth, J. Soil Sci., 23, 417–454. Millington, R. J., and R. C. Shearer (1971), Diffusion in aggregate porous media, Soil Sci., 111, 372– 378. Monteith, J. L., G. Szeicz, and K. Yabuki (1964), Crop photosynthesis and the flux of carbon dioxide below the canopy, J. Appl. Ecol., 1, 321–327. Nakadai, T., H. Koizumi, Y. Usami, M. Satoh, and T. Oikawa (1993), Examination of the methods for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration, Ecol. Res., 8, 65– 71. Natale, G., P. Herna´ndez, T. Mori, and K. Notsu (2000), Pressure gradient measurements in volcanic diffuse gas emanations, Geophys. Res. Lett., 27, 3985–3987. Norman, J. M., R. Garcia, and S. B. Verma (1992), Soil surface CO2 fluxes and the carbon budget of a grassland, J. Geophys. Res., 97, 18,845– 18,853. Rogie, J. D., D. M. Kerrick, M. L. Sorey, G. Chiodini, and D. L. Galloway (2001), Dynamics of carbon dioxide emission at Mammoth Mountain Continuous monitoring of diffuse CO2 degassing, Horseshoe Lake, Mammoth Mountain, California, Earth Planet. Sci. Lett., 188, 531–541. Sahimi, M., (Eds.) (1995), Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, 223 pp., VCH, New York. Salazar, J. M. L., et al. (2002), Precursory diffuse carbon dioxide degassing signature related to a 5.1 magnitude earthquake in El Salvador, Central America, Earth Planet. Sci. Lett., 205, 81– 89. Scheidegger, A. E. (Eds.) (1974), The Physics of Flow Through Porous Media, 3rd ed., 353 pp., Univ. of Toronto Press, Toronto, Ont., Canada. Sinclair, A. J. (1974), Selection of threshold values in geochemical data using probability graphs, J. Geochem. Explor., 3, 129– 149. Spica´k, A., and J. Hora´lek (2001), Possible role of fluids in the process of earthquakes swarm generation in the West Bohemia/Vogtland seismoactive region, Tectonophysics, 336, 151– 161. Tonani, F., and G. Miele (1991), Methods for measuring flow of carbon dioxide through soils in the volcanic setting, paper presented at International Conference Active Volcanoes and Risk Mitigation, IAVCEI, Naples, Italy, 27 Aug. to 1 Sept. Wakita, H. (1996), Geochemical challenge to earthquake prediction, Proc. Natl. Acad. Sci. U.S.A., 93, 3781– 3786. Wentworth, C. K. (1922), A scale of grade and class terms for clastic sediments, J. Geol., 30, 377– 392. Witkamp, M. (1966), Decomposition of leaf litter in relation to environment, microflora and microbial respiration, Ecology, 47, 194– 201. Witkamp, M., and M. L. Frank (1969), Evolution of CO2 from litter, humus, and subsoil of a pine stand, Pedobiology, 9, 358–365.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCamarda, M.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra ed Applicazioni, Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0003-1527-7910-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
621.pdf1.29 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

31
checked on Feb 10, 2021

Page view(s) 50

221
checked on Apr 24, 2024

Download(s)

49
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric