Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2070
DC FieldValueLanguage
dc.contributor.authorallCaratori Tontini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallGraziano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCocchi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCarmisciano, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallStefanelli, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2007-04-03T09:09:51Zen
dc.date.available2007-04-03T09:09:51Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/2070en
dc.description.abstractWe have used free-air gravity satellite data from GEOSAT and ERS-1 missions to compile a Bouguer gravity map of the Mediterranean Sea. The complete Bouguer correction has been applied by using the method of Parker, that acts in the Fourier domain and permits the exact evaluation of the gravity contribution from an highly sampled topographic model of the land. The density used for the Bouguer reduction has been obtained from the gravity data set itself, by using two different optimization methods that have given the same optimal result of 2400 kgm−3. We have studied the radial power spectrum of the data, choosing the optimal Bouguer density from its slope, as the one which minimizes the fractal dimension of the resulting gravity map. The second approach consists of studying the correlation between topography and Bouguer anomaly by spatial cross-plots for a significant subset of the data. Both these approaches are aimed at reducing the short-wavelength effects of topography in the gravity map, but in the past they have been traditionally used alternatively since they gave different optimization values, especially the second method that seems to ignore large-wavelength isostatic effects. Actually, we have revisited both the methodologies, proposing slight modifications to make their efforts compatible. Their coincident results confirmtheir validity of application and give reliability to the recovered value of the Bouguer optimal density. Moreover, modifying the second approach allows us to compile a sort of normalized correlation map, which we propose in this paper, defining the 2-D isostatic setting of the investigated region without introducing any further lithospheric model. The final result is a revised Bouguer map compiled using a grid with a resolution of 2 min, that is useful for large-scale geological studies and gives important information about the compensation mechanism of the Mediterranean Sea: in a direct way we have found that the overall region seems to be in a complete isostatic equilibrium apart from the young basins of Tyrrhenian Sea and Aegean Sea, confirming previous similar results.en
dc.format.extent626192 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/169 (2007)en
dc.subjectdensityen
dc.subjectfractalsen
dc.titleDetermining the optimal Bouguer density for a gravity data set: implications for the isostatic setting of the Mediterranean Seaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber380-388en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasyen
dc.identifier.doi10.1111/j.1365-246X.2007.03340.xen
dc.relation.referencesAndersen, O.B. & Knudsen, P., 1998. Global marine gravity fields from the ERS-1 and GEOSAT geodetic mission altimetry, J. geophys. Res., 103, 8129–8137. Balmino, G., 2003. Gravity field recovery form GRACE: unique aspects of the high precision inter-satellite data and analysis method, Sp. Sc. rev. 108, 47–54. Berhend,D., Denker, H.&Schmidt, K., 1996. Digital gravity data sets for the Mediterranean Sea derived from available maps, Bull. d. Inf., 78, 32–41. Carminati, E.,Wortel, M.J.R., Meijer, P.T h. & Sabadini, R., 1998. The twostage opening of the western-central Mediterranean basins: a forward modeling test to a new evolutionary model, Earth planet. Sci. Lett., 160, 667–679. Chapin, D.A., 1996. A deterministic approach toward isostatic gravity residuals—a case study from South America, Geophysics, 4, 1022–1033. Consiglio Nazionale delle Ricerche, 1992. Structural model of Italy and gravity map, Progetto Finalizzato Geodinamica. Quaderni de ‘La Ricerca Scientifica’, 114, (9 sheets), CNR. Della Vedova, B., Bellani, S., Pellis, G. & Squarci, P., 2001. Deep temperatures and surface heat flow distribution, in Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basin, pp. 65–76, eds Vai, G.B. & Martini, I.P., Kluwer Academic, Dordrecht. Fairhead, J.D.&Odegard, M.E., 2002. Advances in gravity survey resolution, The Leading Edge, 21, 36–37. Forsyth,D.W., 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere, J. geophys. Res., 90, 12 623–12 632. Gregotski, M.E., Jensen, O. & Arkani-Hamed, J., 1991. Fractal stochastic modeling of aeromagnetic data, Geophysics, 56, 1706–1715. Hayford, J.F. & Bowie, W., 1912. The effect of topography and isostatic compensation upon the intensity of gravity, U.S. Coast Geod. Surv. Spec. Publ., 10. Hinze, W.J., 2003. Bouguer reduction density, why 2.67?, Geophysics, 68, 1559–1560. Hoernle, K., Zhang, Y. & Grabham, D., 1995. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and Western Europe, Nature, 374, 34–38. Jackson, J.&McKenzie,D., 1988. Rates of active deformation in the Aegean Sea and surrounding areas, Basin Res., 3, 121–128. Karner, G.D. & Watts, A.B., 1983. Gravity anomalies and flexure of the lithosphere at mountain ranges, J. geophys. Res., 88, 10 449–10 477. Knudsen, P. & Brovelli, M., 1993. Collinear and cross-over adjustment of Geosat ERM and Seasat altimeter data in the Mediterranean Sea, Surv. Geophys. 14, 449–459. Le Pichon, X.&Angelier J., 1979. The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area Tectonophysics, 60, 1–42. Makris, J., Morelli, C. & Zanolla, C., 1998. The Bouguer gravity map of the Mediterranean Sea (IBCM-G), Boll. Geof. Teo. Appl., 39, 79–98. Malinverno, A. & Ryan, W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of lithisphere, Tectonics, 5, 227–245. Mandelbrot, B.B., 1967. How long is the coast of Britain? Statistical selfsimilarity and fractional dimensions, Science 156, 636–638. Maus, S. & Dimri, V.P., 1994. Scaling properties of potential fields due to scaling sources, Geophys. Res. Lett., 21, 891–894. McKenzie, D.&Fairhead, J.D., 1976. Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies, J. geophys. Res., 102, 27 523–27 552. Nettleton, L.L., 1939. Determination of density for reduction of gravimeter observations, Geophysics, 4, 176–183. Parker, R.L., 1972. The rapid calculation of potential Anomalies, Geophys. J. R. astr. Soc., 31, 447–455. Parker, R.L., 1977. Understanding inverse theory, Annu. Rev. Earth planet. Sci., 5, 35–64. Pilkington, M. & Todoeschuck, J.P., 1993. Fractal magnetization of continental crust, Geophys. Res. Lett., 20, 627–630. Royden, L., 1988. Flexural Behaviour of the Continental lithosphere in Italy: constraints imposed by gravity and deflection data, J. geophys. Res., 93, 7747–7766. Sandwell, D.T. & Smith, W.H.F., 1997. Marine Gravity anomaly from GEOSAT and ERS-1 satellite altimetry, J. geophys. Res., 102, 10 039– 10 054. Sartori, R., Torelli, L., Zitellini, N., Carrara, G., Magaldi, M. & Mussoni, P., 2004. Crustal features along a W-E Tyrrhenian transect from Sardinia to Campanian margins (Central Mediterranean), Tectonophysics, 383, 171– 192. Seber, D., Sandvol, E., Sandvol, C., Brindisi, C. & Barazangi, M., 2001. Crustal model for the Middle East and North Africa region: implications for the isostatic compensation mechanism, Geophys. J. Int., 147, 630– 638. Simons, F.J., Zuber, M.T. & Korenaga, J., 2000. Isostatic response of the Australian lithosphere: estimation of the effective elastic thickness and anisotropy using multitaper spectral analysis, J. geophys. Res., 105, 19 163–19 184. Simpson, R.W., Jachens, R.C., Blakely, R.J. & Saltus, R.W., 1986. A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies, J. geophys. Res., 91, 8348–8372. Thorarinsson, F. & Magnusson, S.G., 1990. Bouguer density determination by fractal analysis, Geophysics, 7, 932–935. Turcotte, D.L., 1997. Fractals and Chaos in Geology and Geophysics, Cambridge University Press, New York. Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P.&Boschi, E., 2004. An atlas of Mediterranean seismicity, Ann. Geoph., 47 247– 306. Yale, M., Sandwell, D.T. & Herring, A., 1998. What are the Limitations of Satellite Altimetry?, The Leading Edge, 17, 73–76.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorCaratori Tontini, F.en
dc.contributor.authorGraziano, F.en
dc.contributor.authorCocchi, L.en
dc.contributor.authorCarmisciano, C.en
dc.contributor.authorStefanelli, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-7835-1116-
crisitem.author.orcid0000-0001-7357-2147-
crisitem.author.orcid0000-0002-2388-2662-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
medgravmap.pdf611.52 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

33
checked on Feb 7, 2021

Page view(s) 20

397
checked on Apr 24, 2024

Download(s) 20

682
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric