Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16993
Authors: Pignalberi, Alessio* 
Truhlik, Vladimir* 
Giannattasio, Fabio* 
Coco, Igino* 
Pezzopane, Michael* 
Title: Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model
Journal: Atmosphere 
Series/Report no.: /15 (2024)
Publisher: MDPI
Issue Date: Apr-2024
DOI: 10.3390/atmos15040490
Subject Classification01.02. Ionosphere 
Abstract: This study focuses on the open question of the electron temperature (Te) variation with solar activity in the topside ionosphere at mid- and high latitudes. It takes advantage of in situ observations taken over a decade (2014–2023) from Langmuir probes on board the low-Earth-orbit Swarm B satellite and spanning an altitude range of 500–530 km. The study also includes a comparison with Te values modeled using the International Reference Ionosphere (IRI) model and with Millstone Hill (42.6° N. 71.5° W) incoherent scatter radar observations. The largest Te variation with solar activity was found at high latitudes in the winter season, where Te shows a marked decreasing trend with solar activity in the polar cusp and auroral regions and, more importantly, at sub-auroral latitudes in the nightside sector. Differently, in the summer season, Te increases with solar activity in the polar cusp and auroral regions, while for equinoxes, variations are smaller and less clear. Mid-latitudes generally show negligible Te variations with solar activity, which are mostly within the natural dispersion of Te observations. The comparison between measured and modeled values highlighted that future implementations of the IRI model would benefit from an improved description of the Te dependence on solar activity, especially at high latitudes.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
Pignalberi_et_al_2024_Atmosphere.pdfOpen Access Published Article81.5 MBAdobe PDFView/Open
Show full item record

Page view(s)

48
checked on Apr 27, 2024

Download(s)

6
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric