Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13701
Authors: Corrado, Sveva* 
Schito, Andrea* 
Romano, Claudia* 
Grigo, Domenico* 
Poe, B. T.* 
Aldega, Luca* 
Caricchi, Chiara* 
Di Paolo, Lea* 
Zattin, Massimiliano* 
Title: An integrated platform for thermal maturity assessment of polyphase, long-lasting sedimentary basins, from classical to brand-new thermal parameters and models: An example from the on-shore Baltic Basin (Poland)
Journal: Marine and Petroleum Geology 
Series/Report no.: /122
Issue Date: 2020
DOI: 10.1016/j.marpetgeo.2020.104547
Keywords: Thermal maturity
Paleozoic source rocks
Raman spectroscopy organic matter
Clay minerals
Poland
Subject Classificationsolid earth
Abstract: Paleo-thermometers in sedimentary basins often drive to misleading thermal modelling when applied alone or only on potentially productive Paleozoic source rocks. Different paleo-thermal and thermo-chronological data have been used as constraints to model the Silurian to Cenozoic succession of a recently drilled well in the onshore portion of the Baltic Basin, in northern Poland. This dataset provides an integrated platform for thermal maturity assessment contributing to the highly debated reconstruction of the thermal history of the Baltic Basin in the last decade. The well stratigraphy consists of a Lower Paleozoic marine clayey and arenaceous/calcareous succession, about 1000 m thick that is unconformably overlain by a 2000 m thick Permian to Cenozoic sequence, developed in a continental to shallow marine environment. Optical microscopy, FT-IR and Raman spectroscopy analysis of organic matter have been coupled with (U–Th)/He data to produce a robust vitrinite reflectance profile and constrain the 1D thermal modelling of the well. In addition, such a thermal maturity profile was validated by an independent thermal modelling calibrated by the smectite illitization kinetics. Both models identify high heat flow conditions (up to 1.7 HFU) at the end of Mesozoic. The Lower Paleozoic succession entered the late oil window of HC generation during this last heating event.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Corrado_et_al_2020.pdf4.29 MBAdobe PDF
Show full item record

Page view(s)

213
checked on Apr 24, 2024

Download(s)

3
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric