Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11480
DC FieldValueLanguage
dc.date.accessioned2018-03-23T13:01:30Zen
dc.date.available2018-03-23T13:01:30Zen
dc.date.issued2017-04-08en
dc.identifier.urihttp://hdl.handle.net/2122/11480en
dc.description.abstractThe Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local hydrothermal system has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the hydrothermal system as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, stillmaintains amoderate alert, as required by the high seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at 2600–5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes. Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated themass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl ~1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin. The vapour discharged at the steam vent “Nereidas” (3600 m asl) is hypothesized to be separated from a high temperature hydrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, aswell as its pH and fO2. The vapour feeding Nereidas would separate from a biphasic hydrothermal system characterized by the following parameters: t= 315 °C, P= 15 MPa, NaCl = 10 wt%, CO2=5 wt%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, pH would approach the value of 1.5 while fO2 would correspond to the FeO-Fe2O3 buffer. Chlorine content is estimated at 10,300mg/l. Changes in the magmatic input into the hydrothermal system couldmodify its degree of vapourization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/346 (2017)en
dc.subjectNevado del Ruizen
dc.subjectWater isotopesen
dc.subjectGeothermal systemen
dc.subjectEquilibrium modellingen
dc.subjectWater chemistryen
dc.titleVapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep hydrothermal system and its effects on thermal springsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber40-53en
dc.identifier.URLhttps://ac.els-cdn.com/S0377027317302056/1-s2.0-S0377027317302056-main.pdf?_tid=f7e0363f-dd0d-4e8f-bb5c-3ddada326011&acdnat=1521806957_8605e6bdd87d1f546a5aeb453d1e165fen
dc.subject.INGV04.08. Volcanologyen
dc.subject.INGV03.02. Hydrologyen
dc.identifier.doi10.1016/j.jvolgeores.2017.04.007en
dc.relation.referencesAlvaro, H., Nieto, E., Brandsdóttir, B., Muñoz, F., 1990. Seismicity associated with the reactivation of Nevado del Ruiz, Colombia, July 1985–December 1986. J. Volcanol. Geotherm. Res. 41 (1), 315–326. Anderko, A., Pitzer, K.S., 1993. Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim. Acta 57, 1657–1680. Arango, E.E., Buitrago, A.J., Cataldi, R., Ferrara, G.C., Panichi, C., Villegas, V.J., 1970. Preliminary study on the Ruiz Geothermal Project (Colombia). Geothermics 2 (Special Issue), 43–56. Badalamenti, B., Chiodini, G., Cioni, R., Favara, R., Francofonte, S., Gurrieri, S., ... Nuccio, P.M., 1991. Special field workshop at Vulcano (Aeolian Islands) during summer 1988: geochemical results. Acta Vulcanol. 1, 223–227. Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 194 (1), 3–23. Barberi, F., Martini, M., Rosi, M., 1990. Nevado del Ruiz volcano (Colombia): pre-eruption observations and the November 13, 1985 catastrophic event. J. Volcanol. Geotherm. Res. 42 (1-2), 1–12. Bohórquez, O.,Monsalve, M.L., Velandia, F., Gil-Cruz, F.,Mora, H., 2005. Determinación del Marco Tectónico Regional para la Cadena Volcánicamás Septentrional de la Cordillera Central de Colombia. Boletín de Geología, UIS 27 (44), 55–79. Calvache,M.L.V., 1990. Pyroclastic deposits of the November 13, 1985 eruption of Nevado del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 41 (1), 67–78. Capasso, G. and Inguaggiato, S., 1998, A simple method for the determination of dissolved gases in natural waters: an application to thermal waters from Vulcano Island.: Appl. Geochem., v. 13, p. 631–642. Craig, H., 1961. Isotopic variations inmeteoric waters, in Science.maggio vol. 133, nº 3465 (26):1702–1703. http://dx.doi.org/10.1126/science.133.3465.1702 PMID 17814749. Espinosa Baquero, A., 2001. Erupciones históricas de los volcanes colombianos, 1500– 1995. Bogotá, D.C., Colombia : Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 16. Federico, C., Capasso, G., Paonita, A., Favara, R., 2010. Effects of steam-heating processes on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters of Vulcano Island (Aeolian archipelago). J. Volcanol. Geotherm. Res. 192:178–190. http://dx.doi.org/10.1016/j.jvolgeores.2010.02.020. Forero, J., Zuluaga, C., Mojica, J., 2011. Alteration related to hydrothermal activity of the Nevado del Ruiz volcano (NRV), Colombia. Boletín de Geología 33 (1), 59–67. Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas samples. Bull. Volcanol. 39 (1), 132–145. Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44, 2021–2032. Giggenbach, W.F., 1984. Mass transfer in hydrothermal alteration systems—a conceptual approach. Geochimica et Cosmochimica Acta 48 (12), 2693–2711. Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765. Giggenbach,W.F., 1990. The chemistry of fumarolic vapor and thermal-spring discharges from the Nevado del Ruiz volcanic-magmatic-hydrothermal system. Colombia. J. Volcanol. Geotherm. Res. 42 (1-2), 13–39. Global Volcanism Program, 2012. Report on Nevado del Ruiz (Colombia). In: Wunderman, R (Ed.), Bulletin of the Global Volcanism Network. 37:8. Smithsonian Institution http://dx.doi.org/10.5479/si.GVP.BGVN201208-351020. Herd, D.G., 1982. Glacial and Volcanic Geology of the Ruiz–Tolima Volcanic Complex, Cordillera Central, Colombia. No. 8. Instituto Nacional de Investigaciones Geológico- Mineras. Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 58, 3425–3437. Horita, J., Cole, D.R.,Wesolowski, D.J., 1995. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350 °C. Geochim. Cosmochim. Acta 59 (6), 1139–1151. HSC Chemistry 6.1®, 2008. Chemical Reaction and Equilibrium Software with Thermochemical Database and Simulation Module. Outotec Research Oy, Pori. Inguaggiato, C., Censi, P., Zuddas, P., Londoño, J.M., Chacón, Z., Alzate, D., Brusca, L., D'Alessandro, W., 2015. Geochemistry of REE, Zr and Hf in a wide range of pH and water composition: the Nevado del Ruiz volcano-hydrothermal system (Colombia). Chem. Geol. 417, 125–133. Johnson, J., Oelkers, E., Helgeson, H., 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947. Krueger, A.J., Walter, L.S., Schnetzler, C.C., Doiron, S.D., 1990. TOMS measurement of the sulfur dioxide emitted during the 1985 Nevado del Ruiz eruptions. J. Volcanol. Geotherm. Res. 41 (1–4), 7–15. Larson, P.B., Taylor, H.P., 1986. An oxygen isotope study of hydrothermal alteration in the Lake-City Caldera, San- JuanMountains, Colorado. J. Volcanol. Geotherm. Res. 30, 47–82. Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., Favara, R., 2010. Hydrothermal processes governing the geochemistry of the crater fumaroles atMount Etna volcano (Italy). Chem. Geol. 278 (1), 92–104. Londoño, J.M., 2010. ASPECTOS RELEVANTES DE LA ACTIVIDAD DEL VOLCÁN NEVADO DEL RUIZ. 1985–2008. Glaciares, nieves y hielos de América Latina. Cambio climático y amenazas. Instituto Colombiano de Geología y Minería, p. 261. Londoño, B.,Makario, J., 2010. Activity and Vp/Vs ratio of volcano-tectonic seismic swarm zones at Nevado del Ruiz volcano, Colombia. Earth Sciences Research Journal 14 (1), 111–124. Martinelli, B., 1990. Analysis of seismic patterns observed at Nevado del Ruiz volcano, Colombia during August–September 1985. J. Volcanol. Geotherm. Res. 41 (1–4), 297–314. Mejía, E.L., Velandia, F., Zuluaga, C.A., López, J.A., Cramer, T., 2012. ANÁLISIS ESTRUCTURAL AL NORESTE DEL VOLCÁN NEVADO DEL RUÍZ, COLOMBIA–APORTE A LA EXPLORACIÓN GEOTÉRMICA. Boletín de Geología 34 (1), 27–41. Naranjo, J.L., Sigurdsson, H., Carey, S.N., Fritz, W., 1986. Eruption of the Nevado del Ruiz volcano, Colombia, on 13 November 1985: tephra fall and lahars. Science 233 (4767), 961–963. Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)–A Computer Programfor Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations: U.S. Geological SurveyWater-Resources Investigations Report 99–4259 (312 p). Parra, E., Cepeda, H., 1990. Volcanic hazard maps of the Nevado del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 42 (1–2), 117–127. Reed, M.H., Spycher, N.F., 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492. Sano, Y., Wakita, H., Williams, S.N., 1990. Helium-isotope systematics at Nevado del Ruiz volcano, Colombia: implications for the volcanic hydrothermal system. J. Volcanol. Geotherm. Res. 42 (1), 41–52. Shock, E.L., Holland, M., Meyer-Dombard, D., Amend, J.P., Osburn, G.R., Fischer, T.P., 2010. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005–4043. Sortino, F., Inguaggiato, S., Francofonte, S., 1991. Determination of HF, HCl, and total sulfur in fumarolic fluids by ion chromatography. Acta Vulcanol. 1, 89–91. Spycher, N.F., Reed, M.H., 1988. Fugacity coefficients of H2, CO2, CH4, H2O and ofH2O-CO2- CH4 mixtures: a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling. Geochim. Cosmochim. Acta 52, 739–749. Stix, J., Layne, G.D.,Williams, S.N., 2003. Mechanisms of degassing at Nevado del Ruiz volcano, Colombia. J. Geol. Soc. 160 (4), 507–521. 52 C. Federico et al. / Journal of Volcanology and Geothermal Research 346 (2017) 40–53 Sturchio, N.C., Williams, S.N., Garcia, N.P., Londono, A.C., 1988. The hydrothermal system of Nevado del Ruiz volcano, Colombia. Bull. Volcanol. 50, 399–412. Symonds, R.B., Gerlach, T.M., Reed, M.H., 2001. Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geotherm. Res. 108 (1), 303–341. Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, A., Olaya, J., Rivera, C., 2000. Geodynamics of the northern Andes: Subductionsand intracontinental deformation (Colombia). Tectonics 19, 787–813. Thouret, J.C., 1990. Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 41 (1–4), 177–201. Uruena-Suarez, C.L., Zuluaga, C.A., Molano, J.C., 2012. Estudio de inclusiones fluidas en pozos de gradiente térmico, volcán Nevado del Ruiz. Bol. Geol. 34 (2), 103–115. Wagner,W., Overhof, U., 2006. Extended IAPWS-IF97 Steamtables, Version 2.0, 2006, CDROM., Jewel case. Elsevier 978-3-540-21412-0. White, A.F., Chuma, N.J., Goff, F., 1992. Mass-transfer constraints on the chemical evolution of an active hydrothermal system, Valles Caldera, New Mexico. J. Volcanol. Geotherm. Res. 49, 233–253. Williams, S.N., Sturchio, N.C., Mendez, R., Londoño, A., García, N., 1990. Sulfur dioxide from Nevado del Ruiz volcano, Colombia: total flux and isotopic constraints on its origin. J. Volcanol. Geotherm. Res. 42 (1–2), 53–68.en
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien
dc.description.journalTypeJCR Journalen
dc.relation.issn0377-0273en
dc.contributor.authorFederico, Cinziaen
dc.contributor.authorInguaggiato, Salvatoreen
dc.contributor.authorChacón, Zoraidaen
dc.contributor.authorLondoño, John Makarioen
dc.contributor.authorGil, Edwingen
dc.contributor.authorAlzate, Diegoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentServicio Geologico ColombianoServicio Geologico Colombiano, Observatorio Vulcanologico y Sismologico de Manizales, Manizales, Colombiaen
dc.contributor.departmentServicio Geologico ColombianoServicio Geologico Colombiano, Observatorio Vulcanologico y Sismologico de Manizales, Manizales, Colombiaen
dc.contributor.departmentServicio Geologico ColombianoServicio Geologico Colombiano, Observatorio Vulcanologico y Sismologico de Manizales, Manizales, Colombiaen
dc.contributor.departmentServicio Geologico ColombianoServicio Geologico Colombiano, Observatorio Vulcanologico y Sismologico de Manizales, Manizales, Colombiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptServicio Geologico Colombiano, Manizales, Colombia-
crisitem.author.deptServicio Geologico Colombiano-
crisitem.author.orcid0000-0001-8887-2580-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Federico et al. 2017.pdf1.54 MBAdobe PDF
VOLGEO5197Federico.pdfOpen Access11.95 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 10

3
checked on Feb 10, 2021

Page view(s)

199
checked on Apr 24, 2024

Download(s)

39
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric