Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10721
DC FieldValueLanguage
dc.date.accessioned2018-02-16T08:05:27Zen
dc.date.available2018-02-16T08:05:27Zen
dc.date.issued2017-06en
dc.identifier.urihttp://hdl.handle.net/2122/10721en
dc.description.abstractDuring the last few decades, 4D volcano gravimetry has shown great potential for illuminating subsurface processes at active volcanoes (including some that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide unique information regarding such processes as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, 4D volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravity at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of 4D gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of 4D volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from, campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of 4D volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth-Science Reviewsen
dc.relation.ispartofseries/169 (2017)en
dc.subjecttime-variable microgravimetryen
dc.subjectvolcano gravimetryen
dc.titleThe added value of time-variable microgravimetry to the understanding of how volcanoes worken
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber146-179en
dc.identifier.URLhttps://www.sciencedirect.com/science/article/pii/S0012825216302598?via%3Dihuben
dc.identifier.doi10.1016/j.earscirev.2017.04.014en
dc.relation.referencesAiuppa, A., Cannata, A., Cannavò, F., Di Grazia, G., Ferrari, F., Giudice, G., Gurrieri, S., Liuzzo, M., Mattia, M., Montalto, P., Patanè, D. and Puglisi, G., 2010. Patterns in the recent 2007–2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations. Geochem. Geophys. Geosys. 11 (Q09008), doi:10.1029/2010GC003168 Allard, P., 2010. A CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy. J. Volcanol. Geotherm. Res. 189 (3–4), 363–374, doi:10.1016/j.jvolgeores.2009.11.018. Aloisi, M.,Cocina, O.,Neri, G.,Orecchio, B., Privitera, E., 2002. Seismic tomography of the crust underneath the Etna volcano, Sicily. Phys. Earth Planet. Inter. 134, 139–155. http://dx.doi.org/10.1016/S0031-9201(02)00153-X. Andò, B., Carbone, D., 2001. A methodology for reducing a continuously recording gravity meter for the effect of meteorological parameters. IEEE Trans. Instrum. Meas. 50 (5), 1248–1254, doi:10.1109/19.963193. Andò, B. and Carbone, D., 2004. A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters. Phys. Earth Planet. Inter. 142 (1–2), 37–47, doi:10.1016/j.pepi.2003.12.006. Andò, B. and Carbone, D., 2006. A new computational approach to reduce the signal from continuously recording gravimeters for the effect of atmospheric temperature. Phys. Earth Planet. Inter., 159 (3–4), 247–256, doi:10.1016/j.pepi.2006.07.009. Bagnardi, M., Poland, M.P., Carbone, D., Baker, S., Battaglia, M. and Amelung, F., 2014. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009–2012. J. Geophys. Res. 119 (9), 7288–7305, doi:10.1002/2014JB011506. Battaglia, M., Roberts, C. and Segall, P., 1999. Magma intrusion beneath Long Valley Caldera confirmed by temporal changes in gravity. Science 285 (5436), 2119–2122, doi:10.1126/science.285.5436.2119. Battaglia, M., Segall, P. and Roberts, C., 2003. The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data. J. Volcanol. Geotherm. Res. 127 (3-4), 219–245, doi:10.1016/S0377-0273(03)00171-9. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F. and De Natale, G., 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys. Res. Lett. 33 (1), doi:10.1029/2005GL024904. Battaglia, M., Gottsmann, J., Carbone, D. and Fernández, J., 2008. 4D volcano gravimetry. Geophysics, 73(6): WA3-WA18, doi: 10.1190/1.2977792. Berrino, G., 2000. Combined gravimetry in the observation of volcanic processes in Southern Italy. J. Geodynamics 30 (3), 371–388, doi:10.1016/S0264-3707(99)00072-1. Berrino, G., Corrado, G., Luongo, G., Toro, B., Barberi, F., Hill, D.P., Innocenti, F., Luongo, G. and Treuil, M., 1984. Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift. Bull. Volcanol. 47 (2), 187–200, doi:10.1007/BF01961548. Berrino, G., Corrado, G. and Riccardi, U., 2006. On the capability of recording gravity stations to detect signals coming from volcanic activity: the case of Vesuvius. J. Volcanol. Geotherm. Res. 150 (1–3), 270–282, doi:10.1016/j.jvolgeores.2005.07.015. Berrino, G., d’Errico, V. and Ricciardi, G., 2013. Thirty years of precise gravity measurements at Mt. Vesuvius: an approach to detect underground mass movements. Ann. Geophys. 56 (4), S0436; doi:10.4401/ag-6442. Bonvalot, S., Diament, M. and Germinal, G., 1998. Continuous gravity recording with Scintrex CG-3M meters: A promising tool for monitoring active zones, Geophys. J. Int. 135 (2), 470–494, doi:10.1046/j.1365-246X.1998.00653.x. Bonvalot, S., Remy, D., Deplus, C., Diament, M. and Gabalda, G., 2008. Insights on the March 1998 eruption at Piton de la Fournaise volcano (La Réunion) from microgravity monitoring. J. Geophys. Res. 113 (B5), doi:10.1029/2007JB005084. Branca, S., Carbone, D. and Greco, F., 2003. Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences. Geophys. Res. Lett. 30 (20), doi:10.1029/2003GL018250. Budetta, G., and Carbone, D., 1997. Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily. J. Volcano. Geotherm. Res. 76 (3), 199–214, doi:10.1016/S0377-0273(96)00080-7. Budetta, G., Carbone, D., and Greco, F., 1999. Subsurface mass redistribution at Mount Etna (Italy) during the 1995–96 explosive activity detected by microgravity studies. Geophys. J. Int. 138 (1), 77–88, doi:10.1046/j.1365-246x.1999.00836.x. Camacho, A.G., González, P.J., Fernández, J. and Berrino, G., 2011. Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: Application to deforming calderas. J. Geophys. Res. 116 (B10401), doi:10.1029/2010JB008165. Carbone, D. and Greco, F., 2007. Insights into the internal dynamics of Etna volcano through discrete and continuous microgravity observations. Pure App. Geophys. 164 (4), 769–790. Carbone, D. and Poland, M.P., 2012. Gravity fluctuations induced by magma convection at Kīlauea Volcano, Hawai‘i. Geology, 40(9): 803-806, doi:10.1130/G33060.1. Carbone, D., Budetta, G., Greco, F., 2003a. Bulk processes prior to the 2001 Mount Etna eruption, highlighted through microgravity studies. J. Geophys. Res. 108 (2556), doi:10.1029/2003JB002542. Carbone, D., Budetta, G., Greco, F. and Rymer, H., 2003b. Combined discrete and continuous gravity observations at Mount Etna. J. Volcanol. Geotherm. Res. 123 (1–2), 123–135, doi:10.1016/S0377-0273(03)00032-5. Carbone, D., Budetta, G. and Greco, F., 2003c. Possible mechanisms of magma redistribution under Mt. Etna during the 1994 – 1999 period detected through microgravity measurements. Geophys. J. Int. 153 (1), 187–200, doi:10.1046/j.1365-246X.2003.01901.x Carbone, D., Zuccarello, L., Saccorotti, G. and Greco, F., 2006. Analysis of simultaneous gravity and tremor anomalies observed during the 2002-2003 Etna eruption. Earth Planet. Sci. Lett. 245 (3–4), 616–629, doi:10.1016/j.epsl.2006.03.055. Carbone, D., Currenti, G. and Del Negro, C., 2008a. Multiobjective genetic algorithm inversion of ground deformation and gravity changes spanning the 1981 eruption of Etna volcano. J. Geophys. Res. 113 (7), doi:10.1029/2006JB004917. Carbone, D., Zuccarello, L. and Saccorotti, G., 2008b. Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period. Geophys. Res. Lett. 35 (6), doi:10.1029/2008GL033212. Carbone, D., D'Amico, S., Musumeci, C. and Greco, F., 2009a. Comparison between the 1994–2006 seismic and gravity data from Mt. Etna: New insight into the long-term behavior of a complex volcano. Earth Planet. Sci. Lett. 279 (3–4), 282–292, doi:10.1016/j.epsl.2009.01.007. Carbone, D., Jousset, P. and Musumeci, C., 2009b. Gravity “steps” at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes? Geophys. Res. Lett. 36 (L02301), doi:10.1029/2008GL0361. Carbone, D., Zuccarello, L., Montalto, P. and Rymer, H., 2012. New geophysical insight into the dynamics of Stromboli volcano (Italy). Gondwana Res. 22 (1), 290–299, doi:10.1016/j.gr.2011.09.007. Carbone, D., Poland, M.P., Patrick, M.R. and Orr, T.R., 2013. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i. Earth Planet. Sci. Lett. 376, 178–185, doi:10.1016/j.epsl.2013.06.024. Carbone, D., Aloisi, M., Vinciguerra, S. and Puglisi, G., 2014. Stress, strain and mass changes at Mt. Etna during the period between the 1991–93 and 2001 flank eruptions. Earth Sci. Rev. 138, 454–468, doi:10.1016/j.earscirev.2014.07.004. Carbone, D., Zuccarello, L., Messina, A., Scollo, S. and Rymer, H., 2015. Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna. Sci. Rep. 5, 18049, doi:10.1038/srep18049. Cerutti, G., Cannizzo, L., Sakuma, A. and Hostache, J., 1974. A transportable apparatus for absolute gravity measurements. VDI-Berichte, 212, 49–51. Charco, M., Luzón, F., Fernández, J., Tiampo, K.F. and Sánchez‐Sesma, F.J., 2007. Three‐dimensional indirect boundary element method for deformation and gravity changes in volcanic areas: Application to Teide volcano (Tenerife, Canary Islands). J. Geophys. Res. 112 (B8), doi:10.1029/2006JB004740. Clark, D.A., Saul, S.J. and Emerson, D.W., 1986. Magnetic and gravity anomalies of a triaxial ellipsoid. Exploration Geophys. 17 (4), 189–200, doi:10.1071/EG986189. Currenti, G., 2014. Numerical evidences enabling to reconcile gravity and height changes in volcanic areas. Geophys. J. Int. 197 (1), 164–173, doi:10.1093/gji/ggt507. D’Agostino, G., Desogus, S., Germak, A., Origlia, C., Quagliotti, D., Berrino, G., Corrado, G., d’Errico, V. and Ricciardi, G., 2008. The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Ann. Geophys. 51 (1), 39–49, doi:10.4401/ag-3038. de Zeeuw-van Dalfsen, E., Rymer, H., Sigmundsson, F. and Sturkell, E., 2004. Net gravity decrease at Askja volcano, Iceland: Constraints on processes responsible for continuous caldera deflation, 1988–2003. J. Volcanol. Geotherm. Res. 139 (3–4), 227–239, doi:10.1016/j.jvolgeores.2004.08.008. de Zeeuw-van Dalfsen, E., Rymer, H., Williams-Jones, G., Sturkell, E. and Sigmundsson, F., 2006. Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla volcano, N Iceland. Bull. Volcanol. 68 (5), 420–431, doi:10.1007/s0445-005-0018-5. de Zeeuw-van Dalfsen, E., Pedersen, R., Hooper, A. and Sigmundsson, F., 2012. Subsidence of Askja caldera 2000–2009: Modelling of deformation processes at an extensional plate boundary, constrained by time series InSAR analysis. J. Volcanol. Geotherm. Res. 213-214, 72–82, doi:10.1016/j.jvolgeores.2011.11.004. Deroussi, S., Diament, M., Feret, J.B., Nebut, T. and Staudacher, T., 2009. Localization of cavities in a thick lava flow by microgravimetry. J. Volcanol. Geotherm. Res. 184 (1), 193–198, doi:10.1016/j.jvolgeores.2008.10.002. Dickerson, S.M., Hogan, J.M., Sugarbaker, A., Johnson, D.M. and Kasevich, M.A., 2013. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111 (8), 083001, doi:10.1103/PhysRevLett.111.083001. Dzurisin, D., Anderson, L.A., Eaton, G.P., Koyanagi, R.Y., Lipman, P.W., Lockwood, J.P., Okamura, R.T., Puniwai, G.S., Sako, M.K. and Yamashita, K.M., 1980. Geophysical observations of Kilauea Volcano, Hawaii; 2, Constraints on the magma supply during November 1975-September 1977. J. Volcanol. Geotherm. Res. 7 (3–4), 241–269, doi:10.1016/0377-0273(80)90032-3. Eggers, A.A., 1983. Temporal gravity and elevation changes at Pacaya volcano, Guatemala. J. Volcanol. Geotherm. Res. 19 (3–4), 223–237, doi:10.1016/0377-0273(83)90111-7. Eggers, A.A., and Chavez, D., 1979. Temporal gravity variations at Pacaya Volcano, Guatemala. J. Volcanol. Geotherm. Res. 6 (3–4), 391–402, doi:10.1016/0377-0273(79)90012-X. Eggers, A.A., Krausse, J., Rush, H., and Ward, J., 1976. Gravity changes accompanying volcanic activity at Pacaya Volcano, Guatemala. J. Volcanol. Geotherm. Res. 1 (3), 229–236, doi:10.1016/0377-0273(76)90009-3. El Wahabi, A., Ducarme, B., Van Ruymbeke, M., d’Oreye', N., Somerhausen, A., 1997. Continuous gravity observations at Mount Etna (Sicily) and Correlations between temperature and gravimetric records. Cah. Cent. Eur. Geodyn. Seismol. 14, 105–119. El Wahabi, A., Ducarme, B. & Van Ruymbeke, M., 2001. Humidity and temperature effects on LaCoste & Romberg gravimeters. Proceedings of the 14th International Symposium on Earth Tides, Mizusawa, Japan, J. Geodetic Soc. Japan. 47 (1), 10-15. Fernández, J. and Rundle, J.B., 1994. Gravity changes and deformation due to a magmatic intrusion in a two-layered crustal model. J. Geophys. Res. 99 (B2), 2737–2746, doi:10.1029/93JB02449. Fialko, Y., Khazan, Y. and Simons, M., 2001. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with application to volcano geodesy. Geophys. J. Int. 146 (1), 181–190. Furuya, M., Okubo, S., Kimata, F., Miyajima, R., Meilano, I., Sun, W., Tanaka, Y. and Miyazaki, T., 2003. Mass budget of the magma flow in the 2000 volcano-seismic activity at Izu-islands, Japan. Earth, Planets, and Space 55 (7), 375–385, doi:10.1186/BF03351771. Gailler L.S., Lénat J.F., Lambert M., Levieux G., Villeneuve N. and Froger J.L., 2009. Gravity structure of Piton de la Fournaise volcano and inferred mass transfer during the 2007 crisis. J. Volcanol. Geotherm. Res. 184, 31–48. doi:10.1016/j.jvolgeores.2009.01.024. Gerlach, T.M., 1986. Exsolution of H2O, CO2, and S during eruptive episodes at Kilauea Volcano, Hawaii. J. Geophys. Res. 91 (B12), 12,177–12,185, doi:10.1029/JB091iB12p12177. Gillot, P., Francis, O., Landragin, A., Dos Santos, F.P. and Merlet, S., 2014. Stability comparison of two absolute gravimeters: optical versus atomic interferometers. Metrologia 51 (5), L15, doi:10.1088/0026-1394/51/5/L15. Goodkind, J.M., 1999. The superconducting gravimeter. Rev. Sci. Instrum. 70 (11), 4131–4152, doi:10.1063/1.1150092. Gottsmann, J., Berrino, G., Rymer, H. and Williams-Jones, G., 2003. Hazard assessment during caldera unrest at the Campi Flegri Italy: a contribution from gravity-height gradients. Earth Planet. Sci. Lett. 211 (3–4), 295–305, doi:10.1016/S0012-821X(03)00225-5. Gottsmann, J., Wooller, L., Martı, J., Fernández, J., Camacho, A.G., Gonzalez, P.J., Garcia, A. and Rymer, H., 2006. New evidence for the reawakening of Teide volcano. Geophys. Res. Lett. 33 (L20311), doi:10.1029/2006GL027523. Gottsmann, J., Carniel, R., Coppo, N., Wooller, L., Hautmann, S. and Rymer, H., 2007. Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: Multiparameter insights from Nisyros, Greece. Geophys. Res. Lett. 34 (L07307), doi:10.1029/2007GL029594. Gottsmann, J., De Angelis, S., Fournier, N., Van Camp, M., Sacks, S., Linde, A. and Ripepe, M., 2011. On the geophysical fingerprint of Vulcanian explosions. Earth Planet. Sci. Lett. 306 (1–2), 98–104, doi:10.1016/j.epsl.2011.03.035. Greco, F., Currenti, G., Del Negro, C., Napoli, R., Budetta, G., Fedi, M. and Boschi, E., 2010. Spatiotemporal gravity variations to look deep into the southern flank of Etna volcano. J. Geophys. Res. 115 (B11411), doi:10.1029/2009JB006835. Greco, F., Currenti, G., D’Agostino, G., Germak, A., Napoli, R., Pistorio, A. and Del Negro, C., 2012. Combining relative and absolute gravity measurements to enhance volcano monitoring. Bull. Volcanol. 74 (7), 1745–1756, doi:10.1007/s00445-012-0630-0. Greco, F., Currenti, G., Palano, M., Pepe, A. and Pepe, S., 2016. Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: the 25-26 October 2013 Etna lava fountaining event. Geophys. Res. Lett., 43 (7), 3246–3253, doi:10.1002/2016GL068426. Hagiwara Y.,1977. The Mogi model as a possible cause of the crustal uplift in the eastern part of Izu Peninsula and the related gravity change. Bull. Earthquake Res. Inst. 52, 301–309. Hautmann, S., Gottsmann, J., Camacho, A.G., Fournier, N., Sacks, I.S. and Sparks, R.S.J., 2010. Mass variations in response to magmatic stress changes at Soufrière Hills Volcano, Montserrat (W.I.): Insights from 4-D gravity data. Earth Planet. Sci. Lett. 290 (1–2), 83–89, doi:10.1016/j.epsl.2009.12.004. Hautmann, S., Gottsmann, J., Camacho, A.G., Van Camp, M. and Fournier, N., 2014. Continuous and campaign-style gravimetric investigations on Montserrat 2006 to 2009. In: Wadge, G., Robertson, D.E.A., and Voight, B., The Eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010, Geological Society of London, Memoirs 39, 241–251. Hemmings, B., Gottsmann, J., Whitaker, F. and Coco, A., 2016. Investigating hydrological contributions to volcano monitoring signals. A time-lapse gravity example. Geophys. J. Int. 207(1), 259-273, doi: 10.1093/gji/ggw266. Hill, D.P., Pollitz, F. and Newhall, C., 2002. Earthquake-volcano interactions. Phys. Today 55 (11), 41– 47. Hinderer, J., Crossley, D., and Warburton.R., 2007. Superconducting gravity meters. In Treatise on Geophysics, chap. 4, vol. 3, ed. T. Herring and G. Schubert. Boston, Massachusetts: Elsevier, p. 65–122, doi:10.1016/B978-044452748-6.00172-3. Iida, K., Hayakawa, M. and Katayose, K., 1952. Gravity Survey of Mihara Volcano Ooshima Island and changes in gravity caused by the eruption. Geol. Surv. Jpn. 152. Jachens, R.C., and Eaton, G.P., 1980. Geophysical observations of Kilauea volcano, Hawaii, 1. temporal gravity variations related to the 29 November, 1975, M = 7.2 earthquake and associated summit collapse. J. Volcanol. Geotherm. Res. 7 (3–4), 225–240, doi:10.1016/0377-0273(80)90031-1. Johnsen, G.V., Bjornsson, A., and Sigurdsson, S., 1980. Gravity and elevation changes caused by magma movement beneath the Krafla caldera, northeast Iceland. J. Geophys. 47 (1–3), 132–140. Johnson, D.J., 1987. Elastic and inelastic magma storage at Kilauea Volcano. In: R.W. Decker, T.L. Wright and P.H. Stauffer (Editors), Volcanism in Hawaii. U.S. Geological Survey Professional Paper 1350, 1297–1306. Johnson, D.J., Eggers, A.A., Bagnardi, M., Battaglia, M., Poland, M.P. and Miklius, A., 2010. Shallow magma accumulation at Kīlauea Volcano, Hawai‘i, revealed by microgravity surveys. Geology 38 (12), 1139–1142, doi:10.1130/G31323.1. Jousset, P., Mori, H. and Okada, H., 2000a. Possible magma intrusion revealed by temporal gravity, ground deformation and ground temperature observations at Mount Komagatake (Hokkaido) during the 1996–1998 crisis. Geophys. J. Int. 143 (3), 557–574, doi:10.1046/j.1365-246X.2000.00218.x. Jousset, P., Dwipa, S., Beauducel, F., Duquesnoy, T. and Diament, M., 2000b. Temporal gravity at Merapi during the 1993-1995 crisis: an insight into the dynamical behaviour of volcanoes. J. Volcanol. Geotherm. Res. 100 (1–4), 289–320, doi:10.1016/S0377-0273(00)00141-4. Jousset, P., Mori, H., and Okada, H., 2003. Elastic models for the magma intrusion associated with the 2000 eruption of Usu Volcano, Hokkaido, Japan. J. Volcanol. Geotherm. Res. 125 (1), 81–106, doi:10.1016/S0377-0273(03)00090-8. Kauahikaua, J. and Miklius, A., 2003. Long-term trends in microgravity at Kilauea's summit during the Pu`u `O`o-Kupianaha eruption. In: C. Heliker, D.A. Swanson and T.J. Takahashi (Editors), The Pu'u O'o-Kupaianaha Eruption of Kilauea Volcano, Hawaii: The First 20 Years, United States Geological Survey Professional Paper 1676, 165–171. Kazama, T. and Okubo, S., 2009. Hydrological modeling of groundwater disturbances to observed gravity: Theory and application to Asama Volcano, Central Japan. J. Geophys. Res. 114 (B08402), doi:10.1029/2009JB006391. Kazama, T., Okubo, S., Sugano, T., Matsumoto, S., Sun, W., Tanaka, Y. and Koyama, E., 2015. Absolute gravity change associated with magma mass movement in the conduit of Asama Volcano (Central Japan), revealed by physical modeling of hydrological gravity disturbances. J. Geophys. Res. 120 (2), 1263–1287, doi:10.1002/2014JB011563. LaCoste, L., 1988. The zero-length spring gravity meter. The Leading Edge, 7 (7), 20–21, doi:10.1190/1.1439525. LaCoste & Romberg, 2004. Instruction manual. Model G and D gravity meters. http://www.gravitymeter-repair.com/LinkClick.aspx?fileticket=53JUtKBPTmg%3d&tabid=66 (last accessed August, 15, 2016).. Le Gouët, J., Mehlstäubler, T.E., Kim, J., Merlet, S., Clairon, A., Landragin, A. and Dos Santos, F.P., 2008. Limits to the sensitivity of a low noise compact atomic gravimeter. App. Phys. B. 92 (2), 133–144, doi:10.1007/s00340-008-3088-1. Longo, A., Vassalli, M., Papale, P. and Barsanti, M., 2006. Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma. Geophys. Res. Lett. 33 (21), doi:10.1029/2006GL027760. Malone, S.D., 1979. Gravity changes accompanying increased heat emission at Mount Baker, Washington. J. Volcanol. Geotherm. Res. 6 (3–4): 241–256, doi:10.1016/0377-0273(79)90004-0. Middlemiss, R.P., Samarelli, A., Paul, D.J., Hough, J., Rowan, S. and Hammond, G.D., 2016. Measurement of the Earth tides with a MEMS gravimeter. Nature 531 (7596), 614–617, doi:10.1038/nature17397. Mikhailov, V., Tikhotsky, S., Diament, M., Panet, I. and Ballu, V., 2004. Can tectonic processes be recovered from new gravity satellite data?. Earth Planet. Sci. Lett., 228(3), 281–297, doi:10.1016/j.epsl.2004.09.035. Mikhailov, V., Panet, I., Hayn, M., Timoshkina, E.B., Bonvalot, S., Lyakhovsky, V., Diament, M., and de Viron, O., 2014, Comparative study of temporal variations in the Earth’s gravity field using GRACE gravity models in the Regions of Three Recent Giant Earthquakes, Phys. Solid Earth, 50(2), 177–191, doi:10.1134/S1069351314020062. Mogi, K., 1958. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull. Earthquake Res. Inst. 36 (2), 99–134. Nabighian, M.N., Ander, M.E., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Pearson, W.C., Peirce, J.W., Phillips, J.D., and Ruder, M.E., 2005. Historical development of the gravity method in exploration. Geophys. 70 (6), 63ND–89ND, doi: 10.1190/1.2133785. Niebauer, T.M., Sasagawa, G.S., Faller, J.E., Hilt, R. and Klopping, F., 1995. A new generation of absolute gravimeters. Metrologia, 32 (3), 159, doi:10.1088/0026-1394/32/3/004. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bul. Seismol. Soc. Am., 75 (4), 1135–1154,. Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82 (2), 1018–1040. Okubo, S., 1992. Gravity and potential changes due to shear and tensile faults in a half-space. J. Geophys. Res. 97 (B5), 7137–7144, doi:10.1029/92JB00178. Okubo, S. and Watanabe, H., 1989. Gravity change caused by a fissure eruption. Geophys. Res. Lett. 16 (5) 445–448, doi:10.1029/GL016i005p00445. Orr, T.R., Thelen, W.A., Patrick, M.R., Swanson, D.A. and Wilson, D.C., 2013. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawai‘i. Geology 41 (2), 207–210, doi:10.1130/G33564.1. Orr, T.R., Poland, M.P., Patrick, M.R., Thelen, W.A., Sutton, A.J., Elias, T., Thornber, C.T., Parcheta, C. and Wooten, K.M., 2015. Kīlauea's 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu‘u ‘Ō ‘ō. In: Hawaiian Volcanoes From Source to Surface, American Geophysical Union Monograph 208, edited by R. Carey, V. Cayol, M. Poland, and D. Weis, pp. 393-420, doi:10.1002/9781118872079.ch18. Peltier, A., Bachèlery, P. and Staudacher, T., 2009. Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data. J. Volcanol. Geotherm. Res. 184 (1–2), 93–108, doi:10.1016/j.jvolgeores.2008.12.008. Peters, A., Chung, K.Y., Chu, S., 2001. High-precision gravity measurements using atom interferometry. Metrologia, 38, 25. Poland, M.P. and Carbone, D., 2016. Insights into shallow magmatic processes at Kīlauea Volcano, Hawaiʻi, from a multiyear continuous gravity time series. J. Geophys. Res. 121 (7), 5477–5492, doi:10.1002/2016JB013057. Poland, M.P., Sutton, A.J. and Gerlach, T.M., 2009. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i. Geophys. Res. Lett. 36 (L16306), doi:10.1029/2009GL039214. Prothero, W.A. and Goodkind, J.M., 1968. A superconducting gravimeter. Rev.Sci. Instrum. 39 (9), 1257–1262, doi:10.1063/1.1683645. Reid, M. E., 2004. Massive collapse of volcano edifices triggered by hydrothermal pressurization, Geology, 32, 373–376, doi: 10.1130/G20300.1. Ripepe, M. and Harris, A.J.L., 2008. Dynamics of the 5 April 2003 explosive paroxysm observed at Stromboli by a near-vent thermal, seismic and infrasonic array. Geophys. Res. Lett. 35 (L07306), doi:10.1029/2007GL032533. Rose, W.I. and Stoiber, R.E., 1969. The 1966 eruption of Izalco volcano, El Salvador. J. Geophys. Res. 74 (12), 3119–3130, doi:10.1029/JB074i012p03119. Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. and Tino, G.M., 2014. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature. 510 (7506), 518–521, doi:10.1038/nature13433. Rymer, H., 1989. A contribution to precision microgravity data analysis using Lacoste and Romberg gravity meters. Geophys. J. Int. 97 (2), 311–322, doi:10.1111/j.1365-246X.1989.tb00503.x. Rymer, H. and Brown, G.C., 1984. Periodic gravity changes at Poas volcano, Costa Rica. Nature, 311 (5983) 243–245, doi:10.1038/311243a0. Rymer, H. and Brown, G.C., 1987. Causes of microgravity change at Poas volcano, Costa Rica: an active but non-erupting system. Bull. Volcanol. 49 (1), 389–398, doi:10.1007/BF01046632. Rymer, H. and Brown, G.C., 1989. Gravity changes as a precursor to volcanic eruption at Poas volcano, Costa Rica. Nature 342 (6252), 902–905, doi:10.1038/342902a0. Rymer, H, and Williams-Jones, G., 2000. Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements. Geophys. Res. Lett. 27 (16) 2389–2392, doi:10.1029/1999GL011293. Rymer, H., Murray, J.B., Brown, G.C., Ferrucci, F. and McGuire, W.J., 1993. Mechanisms of magma eruption and emplacement at Mt. Etna between 1989 and 1992. Nature 361 (6411), 439–441, doi:10.1038/361439a0. Rymer, H., van Wyk de Vries, B., Stix, J., Williams-Jones, G., 1998. Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull. Volcanol. 59 (5), 345–355, doi:10.1007/s004450050196. Rymer, H., Locke, C.A., Borgia, A., Martinez, M., Brenes, J., Van der Laat, R. and Williams‐Jones, G., 2009. Long‐term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova 21 (4), 304–309, doi:10.1111/j.1365-3121.2009.00885.x. Rymer, H., Locke, C., Ofeigsson, B.G., Einarsson, P. and Sturkell, E., 2010. New mass increase beneath Askja volcano, Iceland—a precursor to renewed activity? Terra Nova 22 (4), 309–313, doi:10.1111/j.1365-3121.2010.00948.x. Sainz‐Maza Aparicio, S., Arnoso Sampedro, J., González Montesinos, F. and Martí Molist, J., 2014. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands). J. Geophys. Res. 119 (6), 5033–5051, doi:10.1002/2013JB010795. Schiavone, D., and Loddo, M., 2007. 3-D density model of Mt. Etna volcano (Southern Italy). J. Volcanol. Geotherm. Res. 164 (3), 161–175. doi:10.1016/j.jvolgeores.2007.04.016. Segall, P., 2010. Earthquake and Volcano Deformation. Princeton University Press: Princeton. 465 pp. Sofyan, Y., Nishijima, J., Fujimitsu, Y., Yoshikawa, S., Kagiyama, T. and Ohkura, T., 2014. Monitoring Geothermal Activity at Aso Volcano, Japan, After Small Eruption in May 2011. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, SGP-TR-202. Tarantola, A., 1987. Inverse Problem Theory. 613 pp., Elsevier, Amsterdam. Tiampo, K.F., Rundle, J.B., Fernandez, J. and Langbein J., 2000. Spherical and ellipsoidal volcanic sources at Long Valley Caldera, California using a genetic algorithm inversion technique, J. Volcanol. Geotherm. Res. 102 (3–4), 189– 206, doi:10.1016/S0377-0273(00)00185-2. Tikku, A.A., McAdoo, D.C., Schenewerk, M.S. and Willoughby, E.C., 2006. Temporal fluctuations of microseismic noise in Yellowstone's Upper Geyser Basin from a continuous gravity observation. Geophys. Res. Lett. 33 (11), doi:10.1029/2006GL026113. Tizzani, P., Castaldo, R., Pepe, A., Zeni, G., Lanari, R. and Battaglia, M., 2015. Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling and gravity measurements. J. Geophys. Res. 120 (4), 2627–2647, doi:10.1002/2014JB011502. Todesco, M. and Berrino, G., 2005. Modeling hydrothermal fluid circulation and gravity signals at the Phlegraean Fields caldera. Earth Planet. Sci. Lett. 240 (2), 328–338, doi:10.1016/j.epsl.2005.09.016. Torge, W., 1981. Gravity and height variations connected with the current rifting episode in northern Iceland. Tectonophysics 71 (1–4), 227–240, doi:10.1016/0040-1951(81)90068-8. Torge, W., 1989. Gravimetry. Walter de Gruyter: Berlin. 465 pp. Trasatti, E., and Bonafede, M., 2008. Gravity changes due to overpressure sources in 3D heterogeneous media: Application to Campi Flegrei caldera, Italy. Ann. Geophys. 51 (1), 119–133, doi:10.4401/ag-4442. Vajda, P., Prutkin, I., Tenzer, R. and Jentzsch, G., 2012. Inversion of temporal gravity changes by the method of local corrections: A case study from Mayon volcano, Philippines. J. Volcanol. Geotherm. Res., 241–242, 13–20, doi:10.1016/j.jvolgeores.2012.06.020. Vandemeulebrouck, J., Sohn, R.A., Rudolph, M.L., Hurwitz, S., Manga, M., Johnston, M.J.S., Soule, S.A., McPhee, D., Glen, J.M.G., Karlstrom, L. and Murphy, F., 2014. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics. J. Geophys. Res. 119 (12), 8688–8707, doi:10.1002/2014JB011526. Vassalli, M., Longo, A., Montagna, C.P., O’Brien, G.S., Bean, C.J., Bisconti, L., Papale, P. and Saccorotti, G., 2009. An integrated method to model volcanic processes and associated geophysical signals, in Bean, C.J., et al., eds., The VOLUME project, VOLcanoes: Understanding subsurface mass movement: Dublin, Ireland, The Volume Consortium, p. 162–174. Vigouroux, N., Williams-Jones, G., Chadwick, W., Geist, D., Ruiz, A. and Johnson, D., 2008. 4D gravity changes associated with the 2005 eruption of Sierra Negra volcano, Galápagos. Geophys., 73 (6), WA29–WA35, doi:10.1190/1.2987399. Voight, B., 2000. Structural stability of andesite volcanoes and lava domes, Phil. Trans. R. Soc. Lond., A, 358, 1663-1703, doi: 10.1098/rsta.2000.0609. Walsh, J.B. and Rice, J.R., 1979. Local changes in gravity resulting from deformation. J. Geophys. Res. 84 (B1), 165–170, doi:10.1029/JB084iB01p00165. Watermann H., 1957. Über systematische Fehler bei Gravimetermessunger. DGK, München, 21(C). Williams-Jones, G. and Rymer, H., 2002. Detecting volcanic eruption precursors: a new method using gravity and deformation measurements. J. Volcanol. Geotherm. Res. 113 (3–4), 379–389, doi:10.1016/S0377-0273(01)00272-4. Williams-Jones, G., Rymer, H., Mauri, G., Gottsmann, J., Poland, M. and Carbone, D., 2008. Toward continuous 4D microgravity monitoring of volcanoes. Geophys. 73 (6), WA19–WA28, doi:10.1190/1.2981185. Wilson, L. and Head, J.W., 1981. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86 (B4), 2971–3001, doi:10.1029/JB086iB04p02971. Wilson, C., Wu, H., Scanlon, B., and Sharp, J., 2007. Taking the superconducting gravimeter to the field for hydrologic and other investigations. EOS Trans. Am. Geophys. Union 88 (53), Fall Meeting Supplement, Abstract H11A-050. Yang, X.-M., Davis, P.M. and Dieterich, J.H., 1988. Deformation from inflation of a dipping finite prolate spheroid in an elastic half space as a model for volcanic stressing. J. Geophys. Res. 93 (B5), 4249–4257, doi:10.1029/JB093iB05p04249. Zhou M.K., Duan X.C., Chen L.L., Luo Q., Xu Y.Y., and Hu Z.K., 2015. Micro-Gal level gravity measurements with cold atom interferometry. Chin. Phys. B 24 (5), doi:10.1088/1674-1056/24/5/050401.en
dc.description.obiettivoSpecifico4V. Dinamica dei processi pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.contributor.authorCarbone, Danieleen
dc.contributor.authorPoland, Michael P.en
dc.contributor.authorDiament, Michelen
dc.contributor.authorGreco, Filippoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentU.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA, USAen
dc.contributor.departmentUniv Paris Diderot, Sorbonne Paris Cité, Institut de Physique du Globe de Paris, UMR 7154 CNRS, F-75013 Paris, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptU.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA, USA-
crisitem.author.deptInstitut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cité, Paris, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.orcid0000-0002-0265-5073-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2017_Carbone_et_al_EarthSci.Rev.pdf7.63 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

35
checked on Feb 10, 2021

Page view(s)

611
checked on Apr 24, 2024

Download(s)

6
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric