Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10335
DC FieldValueLanguage
dc.contributor.authorallVarini, E.; Istituto di Matematica Applicata e Tecnologie Informatiche Enrico Magenes, Consiglio Nazionale delle Ricerche (CNR), Milan, Italyen
dc.contributor.authorallRotondi, R.; Istituto di Matematica Applicata e Tecnologie Informatiche Enrico Magenes, Consiglio Nazionale delle Ricerche (CNR), Milan, Italyen
dc.contributor.authorallBasili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBarba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2016-09-05T07:47:09Zen
dc.date.available2016-09-05T07:47:09Zen
dc.date.issued2016-05-19en
dc.identifier.urihttp://hdl.handle.net/2122/10335en
dc.description.abstractThis study presents a series of self-correcting models that are obtained by integrating information about seismicity and fault sources in Italy. Four versions of the stress release model are analyzed, in which the evolution of the system over time is represented by the level of strain, moment, seismic energy, or energy scaled by the moment. We carry out the analysis on a regional basis by subdividing the study area into eight tectonically coherent regions. In each region, we reconstruct the seismic history and statistically evaluate the completeness of the resulting seismic catalog. Following the Bayesian paradigm, we apply Markov chain Monte Carlo methods to obtain parameter estimates and a measure of their uncertainty expressed by the simulated posterior distribution. The comparison of the four models through the Bayes factor and an information criterion provides evidence (to different degrees depending on the region) in favor of the stress release model based on the energy and the scaled energy. Therefore, among the quantities considered, this turns out to be the measure of the size of an earthquake to use in stress release models. At any instant, the time to the next event turns out to follow a Gompertz distribution, with a shape parameter that depends on time through the value of the conditional intensity at that instant. In light of this result, the issue of forecasting is tackled through both retrospective and prospective approaches. Retrospectively, the forecasting procedure is carried out on the occurrence times of the events recorded in each region, to determine whether the stress release model reproduces the observations used in the estimation procedure. Prospectively, the estimates of the time to the next event are compared with the dates of the earthquakes that occurred after the end of the learning catalog, in the 2003–2012 decade.en
dc.description.sponsorshipItalian Dipartimento della Protezione Civile in the framework of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV), project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofTectonophysicsen
dc.relation.ispartofseries/682 (2016)en
dc.subjectpoint processen
dc.subjectprobabilistic forecastingen
dc.subjectinterevent time distributionen
dc.subjectseismogenic sourcesen
dc.subjectBayesian inferenceen
dc.titleStress releasemodel and proxy measures of earthquake size. Application to Italian seismogenic sourcesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber147-168en
dc.identifier.URLhttp://www.sciencedirect.com/science/article/pii/S0040195116301342en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.1016/j.tecto.2016.05.017en
dc.relation.referencesAbramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions. Dover Publications, New York. Ameri, G., Gallovic, F., Pacor, F., 2012. Complexity of the Mw 6.3 2009 L'Aquila (central Italy) earthquake: 2. Broadband strong motion modeling. J. Geophys. Res. Solid Earth 117, B04308. http://dx.doi.org/10.1029/2011JB008729. Ando, T., Tsay, R., 2010. Predictive likelihood for Bayesian model selection and averaging. Int. J. Forecast. 26, 744–763. Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M.M., Boschi, E., 2008. The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy's earthquake geology. Tectonophysics 453 (1–4), 20–43. http://dx.doi.org/10.1016/j.tecto.2007.04.014. Basili, R., Kastelic, V., Valensise, G., DISS Working Group 2009, 2009. DISS3 tutorial series. Guidelines for compiling records of the Database of Individual Seismogenic Sources, version 3. Rapporti Tecnici INGV 108 (20 pps., http://portale.ingv.it/produzione-scientifica/ rapporti-tecnici-ingv/archivio/rapporti-tecnici-2009/). Bebbington, M., Harte, D.S., 2003. The linked stress release model for spatio-temporal seismicity: formulations, procedures and applications. Geophys. J. Int. 154 (3), 925–946. Benioff, H., 1951. Earthquakes and rock creep, part I: creep characteristics of rocks and the origin of aftershocks. Bull. Seismol. Soc. Am. 41, 31–62. Berger, J., 2006. The case for objective Bayesian analysis. Bayesian Anal. 1 (3), 385–402. Bhattacharyya, P., Chakrabarti, B.K., et al., 2006. Modelling Critical and Catastrophic Phenomena in Geoscience. Lect. Notes Phys. Vol. 705. Springer, Berlin Heidelberg. http://dx.doi.org/10.1007/b11766995 Carlin, B.P., Louis, T.A., 2000. Bayes and Emprical Bayes Methods for Data Analysis. Chapman & Hall, London. Choy, G.L., Boatwright, J.L., 1995. Global patterns of radiated seismic energy and apparent stress. J. Geophys. Res. Solid Earth 100 (B9), 18,205–18,228. CPTI Working Group, 2004. Catalogo Parametrico dei Terremoti Italiani, Version 2004 (CPTI04), INGV, Bologna. (available on http://emidius.mi.ingv.it/CPTI04/). DISS Working Group, 2007. Database of Individual Seismogenic Sources (DISS), Version 3.0.2: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas. © INGV 2007 — Istituto Nazionale di Geofisica e Vulcanologia, Rome , Italy http://dx.doi.org/10.6092/INGV.IT-DISS3.0.2 (http://diss.rm.ingv.it/diss/). Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), 1996. Markov Chain Monte Carlo in Practice. Chapman & Hall, London. Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378. Hawkes, A.G., Oakes, D.A., 1974. A cluster process representation of a self-exciting process. J. Appl. Probab. 11, 493–503. Herrmann, R., Malagnini, L., Munafo, I., 2011. Regional moment tensors of the 2009 L'Aquila earthquake sequence. Bull. Seismol. Soc. Am. 101, 975–993. http://dx.doi. org/10.1785/0120100184. International Mathematics and Statistics Library (IMSL), 2000. Numerical Libraries, Version 4.0. Rogue Wave Software, Inc. Isham, V., Westcott, M., 1979. A self-correcting point process. Stoch. Process. Appl. 8, 335–347. Italian Seismological Instrumental and parametric Data-basE, 2010E. Italian Seismic Bulletin. Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy (available on http:// iside.rm.ingv.it. Last accessed date June 3, 2015). Jiang, M., Zhou, S., Chen, Y.J., Ai, Y., 2011. A new multidimensional stress release statistical model based on coseismic stress transfer. Geophys. J. Int. 187 (3), 1479–1494. Kagan, Y.Y., 1991. Likelihood analysis of earthquake catalogue. Geophys. J. Int. 106, 135–148. Kanamori, H., 1977. The energy release in great earthquakes. J. Geophys. Res. Solid Earth 82, 2981–2987. Kanamori, H., Brodsky, E.E., 2004. The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496. Kanamori, H., Heaton, T.K., 2000. Microscopic and macroscopic physics of earthquakes. Geocomplexity and the Physics of EarthquakesGeophysical Monograph Vol. 20. AGU, pp. 127–141. Kanamori, H., Mori, J., Hauksson, E., Heaton, T.H., Hutton, L.K., Jones, L.M., 1993b. Determination of earthquake energy release and ML, using terrascope. Bull. Seismol. Soc. Am. 83, 330–346. Kass, R.E., Raftery, A.E., 1995. Bayes factor. J. Am. Stat. Assoc. 90 (430), 773–795. Kuehn, N.M., Hainzl, S., Scherbaum, F., 2008. Non-Poisson earthquake occurrence in coupled stress release models and its effect on seismic hazard. Geophys. J. Int. 174, 649–658. Lenart, A., 2014. The moments of Gompertz distribution and maximumlikelihood estimation of its parameters. Scand. Actuar. J. 2014 (3), 255–277. http://dx.doi.org/10.1080/ 03461238.2012.687697. Maercklin, N., Zollo, A., Orefice, A., Festa, G., Emolo, A., DeMatteis, R., Delouis, B., Bobbio, A., 2011. The effectiveness of a distant accelerometer array to compute seismic source parameters: the April 2009 L'Aquila earthquake case history. Bull. Seismol. Soc. Am. 101, 354–365. http://dx.doi.org/10.1785/0120100124. Matsu'ura, R.S., 1986. Precursory quiescence and recovery of aftershock activities before some large aftershocks. Bull. Earthq. Res. Inst., Univ. Tokyo 61, 1–65. Meletti, C., Galadini, F., Valensise, G., Stucchi, M., Basili, R., Barba, S., Vannucci, G., Boschi, E., 2008. A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450, 85–108. http://dx.doi.org/10.1016/j.tecto.2008.01.003. MPS Working Group 2004, 2004. Redazione della mappa di Pericolosità Sismica Prevista dall'Ordinanza PCM 3274 del 20 Marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, Milano-Roma, INGV, 2004 April (65 pps., 5 appendixes; http://zonesismiche.mi.ingv.it). Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83 (401), 9–27. Ogata, Y., 1997. Detection of precursory relative quiescence before great earthquakes through a statistical model. J. Geophys. Res. Solid Earth 97 (19), 845–19,871. Ogata, Y., 1999. Seismicity analysis through point-process modeling: a review. In: Wyss, M., Shimazaki, K., Ito, A. (Eds.), Seismicity Patterns, Their Statistical Significance and Physical Meaning. Pure Appl. Geophys. Vol. 155, pp. 471–507 (Birkhäuser, Basel). Pondrelli, S., Salimbeni, S., Morelli, A., Ekström, G., Olivieri, M., Boschi, E., 2010. Seismic moment tensors of the April 2009, L'Aquila (Central Italy) earthquake sequence. Geophys. J. Int. 180, 238–242. http://dx.doi.org/10.1111/j.1365-246X.2009.04418.x. R Development Core Team, 2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical computing, Vienna, Austria (ISBN 3-900051-07-0, URL www.r-project.org). Reid, H.F., 1910. The Mechanics of the Earthquake. The California Earthquake of April 18, 1906. Report of the State Investigation Commission vol. 2. Carnegie Institution of Washington, Washington, D.C. Rotondi, R., Garavaglia, E., 2002. Statistical analysis of the completeness of a seismic catalogue. Nat. Hazards 25 (3), 245–258. Rotondi, R., Varini, E., 2007. Bayesian inference of stress release models applied to some Italian seismogenic zones. Geophys. J. Int. 169 (1), 301–314. Rovida, A., Camassi, R., Gasperini, P., Stucchi,M. (Eds.), 2011. CPTI11, The 2011 Version of the Parametric Catalogue of Italian Earthquakes. Milano, Bologna (http://emidius.mi. ingv.it/CPTI). Scognamiglio, L., Tinti, E., Michelini, A., Dreger, D.S., Cirella, A., Cocco, M., Mazza, S., Piatanesi, A., 2010. Fast determination of moment tensors and rupture history: what has been learned from the 6 April 2009 L'Aquila earthquake sequence. Bull. Seismol. Soc. Am. 81, 892–906. http://dx.doi.org/10.1785/gssrl.81.6.892. Senatorski, P., 2005. A macroscopic approach towards earthquake physics: the meaning of the apparent stress. Phys. A 358, 551–574. Senatorski, P., 2006. Fluctuations, trends and scaling of the energy radiated by heterogeneous seismic sources. Geophys. J. Int. 166, 267–276. Senatorski, P., 2007. Apparent stress scaling and statistical trends. Phys. Earth Planet. Inter. 160, 230–244. Smith, B.J., 2000. Bayesian Output Analysis Program — (BOA) Version 1.1 User's Manual. Department of Biostatistics, School of Public Health, University of Iowa. Smith, B.J., 2007. boa: an R package for MCMC output convergence assessment and posterior inference. J. Stat. Softw. 21 (11) (37 pp., available on http://www.jstatsoft. org/). Stucchi, M., Albini, P., Mirto, C., Rebez, A., 2004. Assessing the completeness of Italian historical earthquake data. Ann. Geophys. 47 (2/3), 659–673. Varini, E., Rotondi, R., 2015. Probability distribution of the waiting time in the stress release model: the Gompertz distribution. Environ. Ecol. Stat. 22 (3), 493–511. http:// dx.doi.org/10.1007/s10651-014-0307-2. Vehtari, A., Ojanen, J., 2012. A survey of Bayesian predictive methods for model assessment, selection and comparison. Stat. Surv. 6, 142–228. Vere-Jones, D., 1978. Earthquake prediction — a statistician's view. J. Phys. Earth 26, 129–146. Vere-Jones, D., Yonglu, D., 1988. A point process analysis of historical earthquakes from North China. Earthq. Res. China 2 (2), 165–181. Votsi, I., Tsaklidis, G.M., Papadimitriou, E.E., 2011. Seismic hazard assessment in central Ionian Islands area (Greece) based on stress release models. Acta Geophys. 59, 4,701–4,727. Wang, A., Vere-Jones, D., Zheng, X., Beckmann, M.J., Gopalan,M.N., Subramanian, R., 1991. Simulation and Estimation Procedures for Stress ReleaseModels. Stochastic Processes and Their Applications, Lecture Notes in Econometrics and Mathematical Systems vol. 370. Springer, Berlin, pp. 11–27. Watanabe, S., 2010. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594. Wells, D.L., Coppersmith, K.L., 1994. New relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84 (4), 974–1002. Zheng, X., Vere-Jones, D., 1991. Application of stress release models to historical earthquakes from North China. Pure Appl. Geophys. 135 (4), 559–576. Zheng, X., Vere-Jones, D., 1994. Further applications of the stochastic stress release model to historical data. Tectonophysics 229, 101–121en
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0040-1951en
dc.relation.eissn1879-3266en
dc.contributor.authorVarini, E.en
dc.contributor.authorRotondi, R.en
dc.contributor.authorBasili, R.en
dc.contributor.authorBarba, S.en
dc.contributor.departmentIstituto di Matematica Applicata e Tecnologie Informatiche Enrico Magenes, Consiglio Nazionale delle Ricerche (CNR), Milan, Italyen
dc.contributor.departmentIstituto di Matematica Applicata e Tecnologie Informatiche Enrico Magenes, Consiglio Nazionale delle Ricerche (CNR), Milan, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptConsiglio Nazionale delle Ricerche - Istituto di Matematica Applicata e Tecnologie Informatiche-
crisitem.author.deptConsiglio Nazionale delle Ricerche - Istituto di Matematica Applicata e Tecnologie Informatiche-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.orcid0000-0001-7965-6667-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2016_Varini_etal_Tectonophysics.pdfMain article2.74 MBAdobe PDF
Varini_etal_2016_preprint.pdfOpen Access4 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

6
checked on Feb 10, 2021

Page view(s) 50

325
checked on Apr 24, 2024

Download(s)

93
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric