Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10309

Authors: Paonita, A.*
Tassi, F.*
Chiodini, G.*
Caliro, S.*
Capaccioni, B.*
Vaselli, O.*
Aguilera, F.*
Benavente, O.*
Agusto, M.*
Gutierrez, F.*
Caselli, A.*
Saltori, O.*
Title: Geochemistry of fluid discharges from Peteroa volcano (Argentina-Chile) in 2010–2015: Insights into compositional changes related to the fluid source region(s).
Title of journal: Chemical geology
Series/Report no.: /432 (2016)
Publisher: Elsevier Science Limited
Issue Date: 2016
DOI: 10.1016/j.chemgeo.2016.04.007
Keywords: volcanic gas geochemistry
degassing model
isotope geochemistry
Abstract: This study presents the first geochemical data of fluid discharges collected from February 2010 to March 2015 from the Planchón–Peteroa–Azufre Volcanic Complex (PPAVC), located in the Transitional Southern Volcanic Zone (TSVZ) at the border between Argentina and Chile. During the study period, from January 2010 to July 2011, Peteroa volcano experienced phreatic to phreatomagmatic eruption possibly related to the devastating Maule earthquake occurred on February 27, 2010. The compositional dataset includes low temperature (from 43.2 to 102 °C) gas discharges from (i) the summit of Peteroa volcano and (ii) the SE flank of Azufre volcano, both marked by a significant magmatic fluid contribution, as well as bubbling gases located at the foothill of the Peteroa volcanic edifice, which showed a chemical signature typical of hydrothermal fluids. In 2012, strong compositional changes affected the Peteroa gases fromthe summit area: the acidic gas species, especially SO2, increased, suggesting an input of fluids from magma degassing. Nevertheless, the R/Ra and δ13C–CO2 values decreased, which would imply an enhanced contribution from a meteoric-hydrothermal source. In 2014–2015, the chemical and isotopic compositions of the 2010–2011 gases were partially restored. The anomalous decoupling between the chemical and the isotopic parameters was tentatively interpreted as produced by degassing activity from a small batch of dacitic magma that in 2012 masked the compositional signature of the magmatic fluids released from a basalticmagma that dominated the gas chemistry in 2010–2011. This explanation reliably justifies the observed geochemical data, although the mechanisms leading to the change in time of the dominatingmagmatic fluid source are not clear. At this regard, a geophysical survey able to provide information on the location of the two magma batches could be useful to clarify the possible relationships between the compositional changes that affected the Peteroa fluid discharges and the 2010–2011 eruptive activity.
Appears in Collections:04.08.01. Gases
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
Tassi GasGeochem&DegasAtPeteroa 16.pdfMain article1.37 MBAdobe PDFonly authorized users View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA