Options
Rizzo, Andrea Luca
Loading...
Preferred name
Rizzo, Andrea Luca
Email
andrea.rizzo@ingv.it
Staff
staff
ORCID
Scopus Author ID
35222119400
98 results
Now showing 1 - 10 of 98
- PublicationOpen AccessThe helium and carbon isotopic signature of Ocean island basalts: Insights from Fogo volcano (Cape Verde archipelago)(2024-08)
; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ;volatiles’ abundance and origin in their mantle sources. Here, we add new piece of knowledge to our understanding of volatile geochemistry in global OIB magmas, by presenting new noble gas (He-Ne-Ar) and carbon (C) isotope results for olivine- and clinopyroxene-hosted FI from enclaves, lavas, tephra and volcanic gas samples from Fogo, the only frequently active volcano at the Cape Verde archipelago (eastern Atlantic Ocean). FI, together with crater fumaroles, constrain the Fogo 3He/4He signature at 7.14–8.44 Rc/Ra (where RC is the aircorrected 3He/4He isotope ratio, and Ra is the same ratio in air), which is within the typical MORB (Mid- Ocean Ridge Basalt) mantle. The carbon isotopic ratio (δ13C vs. Pee Dee Belemnite) of CO2 in FI and fumaroles range from -6.04 to -4.41 ‰. We identify systematic variations of δ13C and He/Ar* with FI entrapment pressure (estimated from a combination of host mineral barometry and FI microthermometry), from which we develop a model for volatile degassing in the mantle-to-crustal magma storage system. The model predicts a crustal-like signature for carbon (δ13C of -0.4 ± 1.0 ‰) in primary melts formed by mantle melting at ~2200 MPa (~77 km) and a source He/Ar* ratio of 0.90–0.24, which are indicative of variably depleted mantle metasomatized by carbon enriched melts/fluids from a crustal component. We also use our results to characterise regional (in the Cape Verde and Canary archipelagos) and global trends in C and He isotope composition from OIB. From a comparison with the few other OIB localities for which δ13C are available, we propose that a carbon enriched crustal component could be recurrent at a global scale in OIB magmatism, although often masked by isotope fractionation during magmatic degassing. We additionally find that, at regional scale, He isotopes in OIB scale inversely correlate with the degree of partial melting of the mantle beneath individual islands’ (inferred from the La/Yb ratio of erupted basalts). More widely, our results corroborate previously established global relationships between OIB He isotopic signature, plume buoyancy flux and overlying plate velocity. In this interpretation, the MORB-like 3He/4He (8 ± 1 Ra) at Fogo reflects a combination of (i) low to medium magma productivity, (ii)2 4 - PublicationOpen AccessMUDA: dynamic geophysical and geochemical MUltiparametric DAtabase(2024)
; ; ; ;Ferrari, Elisa; ; ; ; ; ;; In this paper, the new dynamic geophysical and geochemical MUltiparametric DAtabase (MUDA) is presented. MUDA is a new infrastructure of the National Institute of Geophysics and Volcanology (INGV), published online in December 2023, with the aim of archiving and disseminating multiparametric data collected by multidisciplinary monitoring networks. MUDA is a MySQL relational database with a web interface developed in PHP, aimed at investigating possible correlations between seismic phenomena and variations in endogenous and environmental parameters in quasi real time. At present, MUDA collects data from different types of sensors such as hydrogeochemical probes for physical–chemical parameters in waters, meteorological stations, detectors of air radon concentration, diffusive flux of carbon dioxide (CO2) and seismometers belonging both to the National Seismic Network of INGV and to temporary networks installed in the framework of multidisciplinary research projects. MUDA publishes data daily, updated to the previous day, and offers the chance to view and download multiparametric time series selected for different time periods. The resultant dataset provides broad perspectives in the framework of future high-frequency and continuous multiparametric monitoring as a starting point to identify possible seismic precursors for short-term earthquake forecasting. MUDA can be accessed at https://doi.org/10.13127/muda (Massa et al., 2023). - PublicationOpen AccessMultiparametric stations for real-time monitoring and long-term assessment of natural hazards(2024)
;Ferrari, Elisa; ; ; ; ; ; ; ; The present work would like to illustrate a new concept of multiparametric stations to characterize the crustal fluids-tectonic interaction in specific geological contexts. The dynamics of crustal fluids in relation to tectonics is a complex and sometimes intricate issue. Several factors act and mutually influence themselves, so that in each tectonic and geological context they follow a specific behavior, and a comprehensive cause-effect rule is hard to find. Changes in water chemistry and levels and in soil flux regimes (e.g., CO2, CH4, radon) are just a few examples well documented in the literature as being pre-, co- and post-seismic modifications as well as being markers of the local tectonic stress acting in the crust. A regional study combined with a long-lasting multiparametric monitoring is needed to prepare to a seismic sequence in a given place. The field infrastructure was set up starting from the end of 2021, and multiparametric stations have been installed in correspondence of active seismogenic sources initially located in Northern Italy. Data are transmitted in real-time and archived in an ad hoc developed relational database. Monitoring is mainly focused on groundwater parameters (water level, temperature, and electrical conductivity) of aquifers showing distinct degrees of confinement and lithologies. Sites are also equipped of meteorological sensors (pressure, temperature, rain, humidity, wind speed and direction), radon sensors and surface and borehole seismic stations providing accelerometric and velocimetric data. A mud volcano field is also monitored and holds the installation of a permanent CO2 soil flux station. A statistical analysis working flow is also proposed for a preliminary evaluation of the acquired time-series. In particular, a couple of tools to detect, and thus filter, anthropogenic and meteorological effects on a groundwater level series is described. We wish to provide a model of approach to analogous study cases in other potentially seismic areas.57 13 - PublicationOpen AccessTemporal monitoring of fumarole composition at Santorini volcano (Greece) highlights a quiescent state after the 2011–2012 unrest(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Santorini Island (Greece) is an active volcano which has alternated between dormant and active periods over the last 650,000 years with the latest volcanic unrest occurring in 2011–2012. Here we report a geochemical survey of fumarolic gases collected at Nea Kameni islet located in the center of the caldera over the period 2015–2022 in order to study the activity of the volcano and changes in hydrothermal conditions. This period is marked by the absence of significant geochemical anomalies compared to the unrest of 2011–2012, implying that no new magma upwelling has occurred. This is evident from the low CO2/CH4 ratio and H2 concentration of fumaroles. An increase of the atmospheric contribution in gases after the 2011–2012 unrest suggests a decrease of the deep gas flow and the chemical and C-He-isotope compositions are compatible with a model of Rayleigh fractionation in which CO2 dissolves in water at decreasing temperatures over time. These results are consistent with temperature estimates obtained using the H2/N2 geothermometer, seismic and geodetic evidences. This implies a slowing of the degassing of the hydrothermal/volcanic system and a cooling of the magma injected at shallow depth in 2011–2012. All these conclusions support a quiescent state of the Santorini volcano over the period 2015–2022.17 3 - PublicationOpen AccessTracking carbon from subduction to outgassing along the Aleutian-Alaska Volcanic Arc(2023-06-28)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;Subduction transports volatiles between Earth's mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character. Fast and cool subduction facilitates recycling of ~43 to 61% sediment-derived organic carbon to the atmosphere through degassing of central Aleutian volcanoes, while slow and warm subduction favors forearc sediment removal, leading to recycling of ~6 to 9% altered oceanic crust carbon to the atmosphere through degassing of western Aleutian volcanoes. These results indicate that less carbon is returned to the deep mantle than previously thought and that subducting organic carbon is not a reliable atmospheric carbon sink over subduction time scales.38 27 - PublicationOpen AccessNatural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean(2023-05-26)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.93 217 - PublicationEmbargoMagma storage and degassing beneath the youngest volcanoes of the Massif Central (France): Lessons for the monitoring of a dormant volcanic province(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;Developing appropriate monitoring strategies in long-quiescent volcanic provinces is challenging due to the rarity of recordable geochemical and geophysical signals and the lack of experienced eruptive phenomenology in living memory. This is the case in the Massif Central (France) where the last eruptive sequence formed the Pavin’s Group of Volcanoes, about 7 ka ago. There, current evidence of a mantle activity reminiscence is suggested by the presence of mineral springwaters, mofettes, and soil degassing. It appears fundamental as a prerequisite to decipher the evolution of the gas phase in the magmatic system at the time of the eruptive activity to understand the meaning of current local gas emissions. In this study, we develop an innovative approach coupling CO2 densimetry and geochemistry of fluid inclusions from products erupted by the Pavin’s Group of Volcanoes. 3D imagery by Raman spectroscopy revealed that carbonate forming in fluid inclusions may lead to underestimation of CO2 density in fluid inclusions by up to 50 % and thus to unreliable barometric estimates. Fortunately, we found that this effect may be limited by focusing on fluid inclusions with a small diameter (<4 m) and where no solid phase is detected on Raman spectra. The time evolution of the eruptions of the Pavin’s Group of Volcanoes shows a progressive decrease of the pressure of magma storage (from more than 9 kbar down to 1.5-2 kbar) in parallel to magma differentiation (from basanites at Montcineyre to benmoreites at Pavin). The analysis of the noble gases entrapped in fluid inclusions yielded two main conclusions: (1) the helium isotope signature (Rc/Ra = 6.5-6.8) is in the range of values obtained in fluid inclusions from mantle xenoliths in the Massif Central (Rc/Ra = 5.6±1.1, on average) suggesting partial melting of the subcontinental lithospheric mantle, and (2) magma degassing (4He/40Ar* from 4.0 to 16.2) mirrors magma differentiation and the progressive rise of the magma ponding zones of the Pavin’s Group of Volcanoes. According to our modelling, about 80 % of the initial gas phase would be already exsolved from these magmas, even if stored at mantle depth. Based on the results obtained from fluid inclusions, we propose a model of the evolution of the signature of noble gases and carbon isotopes from mantle depth to crustal levels. In this frame, gas emissions currently emitted in the area (Rc/Ra = 6.1-6.7 and 4He/40Ar* = 1.7) point to an origin in the lithospheric mantle. This study strongly encourages the establishment of a regular sampling of local gas emissions to detect potential geochemical variations that may reflect a change from current steady-state conditions190 2 - PublicationOpen AccessSources and migration pathways of methane and light hydrocarbons in the subsurface of the Southern Po River Basin (Northern Italy)(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ;This paper presents new chemical and isotopic data on gases from deep oil and gas fields, bubbling gases, dissolved gases in groundwaters and dry seeps of the Southern Po River Basin (Emilia-Romagna, Italy), aiming to (i) characterize and differentiate the various types of deep natural gases; (ii) identify the source(s) of methane and light hydrocarbons in shallow aquifers and surface gas-rich emissions; (iii) propose a conceptual model of natural fluid migration pathways in the sedimentary prism of the Southern Po River Basin. Based on the isotopic composition of CH4 and C2–C4 n-alkanes, CH4/(C2H6+C3H8) ratio, relative proportion of the C7 hydrocarbons and relative concentration of cyclic compounds with respect to the total cyclic abundance, three main deep reservoirs of hydrocarbons are identified in the subsurface of the Southern Po River Basin: (1) microbial gas hosted in Pliocene-Pleistocene marine sediments, (2) thermogenic gas hosted in Miocene deposits and (3) thermogenic gas produced in Triassic carbonates. Helium isotopes of these deep fluids indicate an almost pure crustal origin (Rc/Ra values = 0.014–0.04), with negligible contributions from mantle-derived helium. A variable contribution of atmosphere-derived fluids is highlighted by low 4He/20Ne (down to 5.42) and 40Ar/36Ar (≤319.5) values. Comparison of chemical and isotopic signatures of deep and surficial hydrocarbon occurrences suggests that methane in shallow groundwaters or gas seeps is sourced by microbial gas migrating upward from deep Plio-Pleistocene reservoirs, with no detectable contributions of Triassic or Miocene thermogenic hydrocarbons. At shallow depths (roughly around 20–50 m.b.g.l.), Plio-Pleistocene microbial methane appears to be mainly stored in anoxic aquifers. However, where CH4 further migrates upwards and reaches aerobic environments (e.g., aquifers or soils), it readily undergoes a process of exothermic microbial oxidation mediated by methanotrophic bacteria. Where the structural architecture of the sedimentary sequence favors the migration of fluids, the methanotrophic biofilter is bypassed and CH4 is discharged through soil diffuse degassing or gas bubbling at water wells. We argue that microbial consumption might be able to bio-sequester significant amounts of Plio-Pleistocene deep-sourced methane in the form of CO2 and biomass. Such process might be widespread in the subsurface of the Southern Po River Basin and, possibly, in other foreland basins worldwide.465 89 - PublicationRestrictedGeochemical evidence for a lithospheric origin of the Comoros Archipelago (Indian Ocean) as revealed by ultramafic mantle xenoliths from La Grille volcano(2023)
; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;; Petrology and fluid inclusions (FI) geochemistry are increasingly used in tandem to constrain the compositional features and evolution of the lithospheric mantle. In this study, we combine petrography and mineral chemistry with analyses of noble gases (He, Ne and Ar) and CO2 in olivine, orthopyroxene- and clinopyroxene-hosted FI, as well as radiogenic isotope (Sr-Nd-Pb) systematics of ultramafic xenoliths collected at La Grille volcano in Grande Comore Island, aiming at better characterizing one of the most enigmatic and controversial portions of the western Indian Ocean lithospheric mantle. Xenoliths have been divided in three groups on the basis of their textural features: Group 1 (Opx-bearing), Group 2 (Opx-free) and Group 3 (Cumulate). Overall, petrographic observations and mineral phase compositions indicate that the sampled lithospheric portion experienced variable degrees of melting (from 5% to 35%), recorded by Group 1 most refractory harzburgites and lherzolites, as well as modal metasomatic processes as evidenced by the crystallization of cpx at the expense of opx in Group 1 fertile lherzolites and wehrlite and by Group 2 xenoliths. Crystallization of slightly oversaturated basic silicate melts seems also to have occurred, as shown by Group 3 xenoliths. A positive trend between temperature and ƒO2 is evident, with Group 2 and 3 xenoliths testifying for hotter and more oxidised conditions than Group 1. The variability of the 4He/40Ar* ratio (0.02–0.39) in Group 1, significantly below typical values of a fertile mantle (4He/40Ar* = 1–5), can be explained by the variable degrees of partial melting coupled to metasomatic enrichment that may account for modifying 4He/40Ar*, as also indicated by the mineral composition. He-Ar-CO2 relationships support the presence of a metasomatic CO2-rich process post-dating the melt extraction and the cumulate formation. The air-corrected 3He/4He isotopic ratios (6.30 to 7.36 Ra) are intermediate between the MORB mantle signature (8 ± 1Ra) and the SCLM (6.1 ± 0.9 Ra). The Ne and Ar isotopic signatures (20Ne/22Ne, 21/Ne/22Ne and 40Ar/36Ar) are consistent with mixing between an air-derived component and a MORB-like mantle, supporting the hypothesis for a lithospheric origin of the Comoros magmas, and arguing against any deep mantle plume-related contribution. This is also corroborated by combining Ne with He isotopes, showing that La Grille ultramafic xenoliths are far from the typical plume-type compositions. Sr-Nd-Pb isotope systematics in opx and cpx from La Grille additionally support a MORB-type signature for the lithospheric mantle beneath the area.120 3 - PublicationOpen AccessThe noble gas signature of the 2021 Tajogaite eruption (La Palma, Canary Islands)(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;Here, we characterize the temporal evolution of volatiles during the Tajogaite eruption by analyzing the elemental (He-Ar-CO2-N2) and isotopic (He-Ar-Ne) composition of fluid inclusions (FI) in phenocrysts (olivine+ pyroxene) identified in erupted lavas. Our 2021 lava samples identify substantial temporal variations in volatile composition. We show that, during the 2021 Tajogaite eruption, the He-CO2-N2 concentrations in FI increased since October 15th; this increase was accompanied by increasing 40Ar/36Ar ratios (from ~300 to >500), and paralleled a major shift in bulk lava chemistry, with increasing Mg contents (Mg#, from 47 to 52 to 55–59), CaO/Al2O3 (from 0.65 to 0.74 to 0.75–0.90), Ni and Cr, and decreasing TiO2, P2O5 and incompatible elements. The olivine core composition also became more forsteritic (from Mg# = 80–81 to Mg# = 84–86). Mineral thermobarometry and FI barometry results indicate that the eruption was sustained by magmas previously stored in at least two magma accumulation zones, at respectively ~6–12 km and 15–30 km, corroborating previous seismic and FI evidence. We therefore propose that the compositional changes seen throughout the eruption can be explained by an increased contribution - since early/mid-October - of more primitive, less degassed magma from the deeper (mantle) reservoir. Conversely, Rc/Ra values (3He/4He ratios corrected for atmospheric contamination) remained constant throughout the whole eruption at MORB-like values (7.38 ± 0.22 Ra, 1σ), suggesting an isotopically homogeneous magma feeding source. The Tajogaite He isotope signature is within the range of values observed for the 1677 San Antonio lavas (7.37 ± 0.17Ra, 1σ), but is more radiogenic than the 3He/4He values (>9 Rc/Ra) observed in the Caldera de Taburiente to the north. The 3He/4He ratios (6.75 ± 0.20 Ra, 1σ) measured in mantle xenoliths from the San Antonio volcano indicate a relatively radiogenic nature of the mantle beneath the Cumbre Vieja ridge. Based on these results and mixing modeling calculations, we propose that the homogeneous He isotopic signatures observed in volatiles from the Tajogaite/San Antonio lavas reflect three component mixing between a MORB-like source, a radiogenic component and small additions (6–15%) of a high 3He/4He reservoir-derived (>9Ra) fluid components. The simultaneous occurrence of high 3He/4He (>9Ra)- and MORB-like He signatures in northern and southern La Palma is interpreted to reflect small-scale heterogeneities in the local mantle, arising from spatially variable proportions of MORB, radiogenic, and high 3He/4He components.45 41