Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15695
DC FieldValueLanguage
dc.date.accessioned2022-08-16T12:00:42Z-
dc.date.available2022-08-16T12:00:42Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2122/15695-
dc.descriptionThis article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.en_US
dc.description.abstractThe computation of the Love numbers for a spherically symmetric self-gravitating viscoelastic Earth is a classical problem in global geodynamics. Here we revisit the problem of the numerical evaluation of loading and tidal Love numbers in the static limit for an incompressible planetary body, adopting a Laplace inversion scheme based upon the Post-Widder formula as an alternative to the traditional viscoelastic normal modes method. We also consider, whithin the same framework, complex-valued, frequency-dependent Love numbers that describe the response to a periodic forcing, which are paramount in the study of the tidal deformation of planets. Furthermore, we numerically obtain the time-derivatives of Love numbers, suitable for modeling geodetic signals in response to surface loads variations. A number of examples are shown, in which time and frequency-dependent Love numbers are evaluated for the Earth and planets adopting realistic rheological profiles. The numerical solution scheme is implemented in ALMA3 (the plAnetary Love nuMbers cAlculator, version 3), an upgraded open-source Fortran 90 program that computes the Love numbers for radially layered planetary bodies with a wide range of rheologies, including transient laws like Andrade or Burgers.en_US
dc.language.isoEnglishen_US
dc.publisher.nameOxford University Press - The Royal Astronomical Societyen_US
dc.relation.ispartofGeophysical Journal Internationalen_US
dc.relation.ispartofseries3/231 (2022)en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.titleOn computing viscoelastic Love numbers for general planetary models: the ALMA3 codeen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1502–1517en_US
dc.identifier.doi10.1093/gji/ggac263en_US
dc.description.obiettivoSpecifico1T. Struttura della Terraen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0956-540Xen_US
dc.contributor.authorMelini, Daniele-
dc.contributor.authorSaliby, Christelle-
dc.contributor.authorSpada, Giorgio-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptInsitute of Physics, University of Urbino, Italy-
crisitem.author.orcid0000-0002-5383-2375-
crisitem.author.orcid0000-0002-0101-723X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
ALMA_PLANETS_FINAL.pdfpost-print Article1.17 MBAdobe PDFView/Open
Show simple item record

Page view(s)

18
checked on Nov 28, 2022

Download(s)

45
checked on Nov 28, 2022

Google ScholarTM

Check

Altmetric