Repository logo
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • People
  • Organizations
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts
 
  • Details
Options

A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

Author(s)
Higueras, P. 
Departamento de Ingenierı´a Geolo´gica y Minera, Escuela Universitaria Polite´cnica de Almade´n, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain 
Oyarzun, R. 
Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain 
Kotnik, J. 
Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia 
Esbrı´, J. M. 
Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain 
Martìnez-Coronado, A. 
Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain 
Horvat, M. 
Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia 
Lòpez-Berdonces, M. A. 
Instituto de Geologı´a Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almade´n, Spain 
Llanos, W. 
Exploraciones Mineras S.A. (EM), Avenida Apoquindo 4775, Providencia, Santiago, Chile 
Vaselli, O. 
Dipartimento di Scienze della Terra, Unversita´ di Florence, Via G. Pira, 4, 50121 Florence, Italy 
Nisi, B. 
CNR-IGG Istituto di Geoscienze e Georisorse, Via Moruzzi 1, 56124 Pisa, Italy 
Mashyanov, N. 
Department of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federation 
Ryzov, V. 
Department of Geology, St. Petersburg State University, 7/9 Universitetskaya nab., St., Petersburg 199034, Russian Federation 
Spiric, Z. 
OIKON, Institute for Applied Ecology, Avenija Dubrovnik 6-8, 10 020 Zagreb, Croatia 
Panichev, N. 
Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africa 
McCrindle, R. 
Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, Pretoria 0007, South Africa 
Feng, X. 
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China 
Fu, X. 
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China 
Lillo, J. 
Escuela Superior de Ciencias Experimentales y Tecnologý´a, Universidad Rey Juan Carlos, Tulipa´n s/n, 28933 Mo´stoles, Madrid, Spain 
Loredo, J. 
Departamento de Explotacio´n y Prospeccio´n de Minas, E.T.S. Ingenieros de Minas, Universidad de Oviedo, C/ Independencia 13, 33004 Oviedo, Spain 
Garcìa, M. E. 
Facultad de Ciencias Quý´micas, Universidad Mayor de San Andre´s, Campus de Cota-Cota, La Paz, Bolivia 
Alfonso, P. 
Departament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spain 
Villegas, K. 
Departament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spain 
Palacios, S. 
Departament d’Enginyeria Minera i Recursos Minerals, Universitat Polite`cnica de Catalunya, Catalunya, Spain 
Oyarzu´n, J. 
Departamento de Ingenierý´a de Minas, Universidad de la Serena, La Serena, Chile 
Maturana, H. 
Departamento de Ingenierı´a de Minas, Universidad de la Serena, La Serena, Chile 
Contreras, F. 
Facultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuela 
Adams, M. 
Facultad de Agronomı´a (Maracay), Universidad Central de Venezuela, Maracay, Venezuela 
Ribeiro-Guevara, S. 
Centro Atomico, Bariloche, Argentina 
Niecenski, L. P. 
Universidade Federal do Rio Grande, Porto Alegre, Brazil 
Giammanco, S. 
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia 
Huremovic´, J. 
Prirodno matematicki fakultet, Sarajevo, Bosna and Herzegovina 
Language
English
Obiettivo Specifico
6A. Monitoraggio ambientale, sicurezza e territorio
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Environmental Geochemistry and Health 
Issue/vol(year)
4/36(2013)
ISSN
0269-4042
Electronic ISSN
1573-2983
Publisher
Springer Science+Business Media B.V.
Pages (printed)
713-734
Issued date
December 31, 2013
DOI
10.1007/s10653-013-9591-2
URI
https://www.earth-prints.org/handle/2122/9552
Subjects
05. General::05.08. Risk::05.08.01. Environmental risk 
Keywords
  • Gaseous elemental mer...

  • Atmospheric pollution...

  • Mining districts

  • Cities

  • Pristine locations

  • Volcanos

  • Hazards

  • Risks

Abstract
Mercury is transported globally in the atmosphere
mostly in gaseous elemental form (GEM, Hg0
gas),
but still few worldwide studies taking into account
different and contrasted environmental settings are
available in a single publication. This work presents
and discusses data from Argentina, Bolivia, Bosnia
and Herzegovina, Brazil, Chile, China, Croatia, Finland,
Italy, Russia, South Africa, Spain, Slovenia and
Venezuela. We classified the information in four
groups: (1) mining districts where this contaminant
poses or has posed a risk for human populations and/or
ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due
to the burning of fossil fuels and industrial activities;
(3) areas with natural emissions from volcanoes; and
(4) pristine areas where no anthropogenic influence
was apparent. All the surveys were performed using
portable LUMEX RA-915 series atomic absorption
spectrometers. The results for cities fall within a low
GEM concentration range that rarely exceeds 30 ng m-3,
that is, 6.6 times lower than the restrictive ATSDR
threshold (200 ng m-3) for chronic exposure to this
pollutant. We also observed this behavior in the former
mercury mining districts, where few data were above
200 ng m-3.We noted that high concentrations of GEM
are localized phenomena that fade away in short
distances. However, this does not imply that they do not
pose a risk for those working in close proximity to the
source. This is the case of the artisanal gold miners that
heat the Au–Hg amalgam to vaporize mercury. In this
respect, while GEM can be truly regarded as a hazard,
because of possible physical–chemical transformations
into other species, it is only under these localized
conditions, implying exposure to high GEM concentrations,
which it becomes a direct risk for humans.
Sponsors
Grants
CGL2009-13171 and CTM2012-33918 from the Spanish
Ministry of Economy and Competitiveness and PII1I09-0142-
4389 from theCastilla-LaMancha (Spain)RegionalGovernment.
References
Acosta, J. A., Martı´nez-Martı´nez, S., Faz, A., Milla´n, R., Mun
˜oz, M. A., Tera´n, T., et al. (2011). Characterization of the
potential mercury contamination in the Apolobamba gold
mining area, Bolivia. Spanish Journal of Soil Science, 1,
86–99.
Aiuppa, A., Bagnato, E., Witt, M. L. I., Mather, T. A., Parello,
F., Pyle, D. M., et al. (2007). Real-time simultaneous
detection of volcanic Hg and SO2 at La Fossa Crater,
Vulcano (Aeolian Islands, Sicily). Geophysical Research
Letters, 34, L21307.
Al-Batanony, M. A., Abdel-Rasul, G. M., Abu-Salem, M. A.,
Al-Dalatony, M. M., & Allam, H. K. (2013). Occupational
exposure to mercury among workers in a fluorescent lamp
factory, Quisna industrial zone, Egypt. International
Journal of Occupational & Environmental Medicine, 4,
149–156.
Almeida, M. D., Marins, R. V., Paraquettia, H. H. M., & Lacerda,
L. D. (2008). Methodology optimization and application
for measurement of gaseous elemental mercury in
the Amazon atmosphere. Journal of the Brazilian Chemical
Society, 19, 1290–1297.
Amon, R. M. W., & Benner, R. (1996). Photochemical and
microbial consumption of dissolved organic carbon and
dissolved oxygen in the Amazon River system. Geochimica
et Cosmochimica Acta, 60, 1783–1792.
ATSDR/EPA National Mercury. Cleanup Policy Workgroup.
Action Levels For Elemental Mercury Spills. March 22,
2012. http://www.atsdr.cdc.gov/emergency_response/Action_
Levels_for_Elemental_Mercury_Spills_2012.pdf. Accessed
28 June 2013.
Aymaz, S., Gross, O., Krakamp, B., Ortmann, M., Dienes, H. P.,
& Weber, M. (2001). Membranous nephropathy from
exposure to mercury in the fluorescent-tube-recycling
industry. Nephrology, Dialysis, Transplantation, 16,
2253–2255.
Berg, T.,Sekkesæter, S.,Steinnes, E.,Valdal, A. K.,&Wibetoe, G.
(2008). Springtime depletion of mercury in the European
Arctic as observed at Svalbard. Science of the Total Environment,
304, 43–51.
Bernhoft, R. A. (2012). Mercury toxicity and treatment: A
review of the literature. International Journal of Environmental
and Public Health. Article no. 460508.
Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho,
S., Roider, G., Lettmeier, B., et al. (2010a). Health
assessment of artisanal gold miners in Indonesia. Science of
the Total Environment, 408, 713–725.
Bose-O’Reilly, S., Drasch, G., Beinhoff, C., Tesha, A., Drasch,
K., Roider, G., et al. (2010b). Health assessment of artisanal
gold miners in Tanzania. Science of the Total Environment,
408, 796–805.
Boudin, L. B. (1952). Seditious doctrines and the clear and
present danger rule. Virginia Law Review, 38, 143–186.
Brown, R. J. C., Pirrone, N., van Hoek, C., Horvat, M., Kotnik,
J., Wangberg, I., et al. (2010a). Standardisation of a
European measurement method for the determination of
mercury in deposition: Results of the field trial campaign
and determination of a measurement uncertainty and
working range. Accreditation and Quality Assurance, 15,
359–366.
Brown, R. J. C., Pirrone, N., Van Hoek, C., Sprovieri, F., Fernandez,
R., & Tote´, K. (2010b). Standardisation of a
European measurement method for the determination of
total gaseous mercury: Results of the field trial campaign
and determination of a measurement uncertainty and
working range. Journal of Environmental Monitoring,
12(3), 689–695.
Carpi, A. (1997). Mercury from combustion sources: A review
of the chemical species emitted and their transport in the
atmosphere. Water, Air, and Soil pollution, 98, 241–254.
Chan, H. M., & Egeland, G. M. (2004). Fish consumption,
mercury exposure, and heart diseases. Nutrition Reviews,
62, 68–72.
Clark, S. (1986). Preservation of herbarium specimens: an
archive conservators approach. Taxon, 35, 675–681.
Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury
and its chemical compounds. Critical Reviews in
Toxicology, 36, 609–662.
Cole, A. S., Steffen, A., Pfaffhuber, K. A., Berg, T., Pilote, M.,
Poissant, L., et al. (2013). Ten-year trends of atmospheric
mercury in the high Arctic compared to Canadian sub-
Arctic and mid-latitude sites. Atmospheric Chemistry and
Physics, 13, 1535–1545.
Dai, Z. H., Feng, X: B., Sommar, J., & Fu, X. W. (2012). Spatial
distribution of mercury deposition fluxex in Wanshan Hg
mining area, Guizhu province, China. Atmospheric
Chemistry and Physics, 12, 6207–6218.
DEFRA (2010). The mercury export and data (enforcement)
regulations 2010: guidance notes, Department for Environment,
Food and Rural Affairs (United Kingdom),
http://archive.defra.gov.uk/environment/quality/chemicals/
documents/mercury-export-data-regs.pdf. Accessed 25 Feb
2013.
Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G.,
Manning, A. J.,&Spain, T. G. (2011). Decreasing trends in
total gaseous mercury observations in baseline air at Mace
Head, Ireland from 1996 to 2009. Atmospheric Environment,
45, 3475–3480.Echeverria, D., Heyer, N. J., Martin, M. D., Naleway, C. A.,
Woods, J. S., & Bittner, A. C., Jr. (1995). Behavioral
effects of low-level exposure to Hg among dentists.
Neurotoxicology and Teratology, 17, 161–168.
EN 15852. (2010). Ambient air quality—Standard method for
the determination of total gaseous mercury. http://www.enstandard.
eu/csn-en-15852-ambient-air-quality-standardmethod-
for-the-determination-of-total-gaseous-mercury/.
Accessed 28 June 2013.
Engle, M. A., & Gustin, M. S. (2002). Scaling of atmospheric
mercury emissions from three naturally enriched areas:
Flowery Peak, Nevada; Peavine Peak, Nevada; and Long
Valley Caldera, California. Science of the Total Environment,
290, 91–104.
European Standards. (2013). CSN EN 15852—Ambient air quality—
Standard method for the determination of total gaseous
mercury. http://www.en-standard.eu/en-15852-ambientair-
quality-standard-method-for-the-determination-of-totalgaseous-
mercury. Accessed 25 Feb 2013.
Feng, X., Foucher, D., Hintelmann, H., Yan, H., He, T., & Qiu,
G. (2010). Tracing mercury contamination sources in
sediments using mercury isotope compositions. Environmental
Science and Technology, 44, 3363–3368.
Feng, X., Shang, L.,Wang, S., Tang, S., Zheng, W. (2004).
Temporal variation of total gaseous mercury in the air of
Guiyang, China. Journal of Geophysical Research D:
Atmospheres, 109(D03303), 1–9.
Ferna´ndez-Patier, R., & Ramos-Dı´az, M. C. (2012). Informe del
Ejercicio de lntercomparacio´n de Mercurio Gaseoso total
en aire ambiente ‘‘IN SITU’’ (an˜o 2011). Ined. Repport,
Instituto de Salud Carlos III, Centro Nacional de Sanidad
Ambiental, A ´ rea de Contaminacio´n Atmosfe´rica. Ministerio
de Economı´a y Competitividad, Espan˜a, 7 pp. In
Spanish.
Fu, X., Feng, X., Sommar, J., & Wang, S. (2012). A review of
studies on atmospheric mercury in China. Science of the
Total Environment, 421–422, 73–81.
Fu, X. W., Feng, X. B., & Zhang, H. (2011). Atmospheric total
gaseous mercury concentration in Guiyang: measurements
intercomparison with Lumex RA-915AM and Tekran
2537A. Chinese Journal of Ecology, 30, 939–943.
Garcia-Sanchez, A., Contreras, F., Adams, M., & Santos, F.
(2006). Airborne total gaseous mercury and exposure in a
Venezuelan mining area. International Journal of Environmental
Health Research, 16, 361–373.
Garcı´a-Sa´nchez, A., Contreras, F., Adams, M., & Santos, F.
(2006). Atmospheric mercury emissions from polluted
gold mining areas (Venezuela). Environmental Geochemistry
and Health, 28, 529–540.
Gosar, M., Pirc, S., Sajn, R., Bidovec, M., Mashyanov, N. R., &
Sholupov, S. E. (1997). Distribution of mercury in atmosphere
over Idrija, Slovenia. Environmental Geochemistry
and Health, 19, 101–110.
Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse
effects of methylmercury: Environmental health research
implications. Environmental Health Perspectives, 118,
1137–1145.
Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa,
B. K. (2004). Mercury speciation and microbial transformations
in mine wastes, stream sediments, and surface
waters at the Almade´n Mining District, Spain. Environment
Science and Technology, 38, 4285–4292.
Gul Oz, S., Tozlu, M., Yalcin, S. S., Sozen, T.,&Sain Guven, G.
(2012). Mercury vapor inhalation and poisoning of a
family. Inhalation Toxicology, 24, 652–658.
Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vette,
A., & Zhang, H. (2000). Assessing the contribution of
natural sources to regional atmospheric mercury budgets.
Science of the Total Environment, 259, 61–71.
Hamdy, M. K., & Noyes, R. (1975). Formation of methyl
mercury by bacteria. Applied Microbiology, 30, 424–432.
Harada, M. (1995). Minamata disease: methylmercury poisoning
in Japan caused by environmental pollution. CRC
Critical Reviews in Toxicology, 25, 1–24.
Health Canada (2009). Mercury. Environmental and Workplace
Health, Health Canada Federal Department, http://www.
hc-sc.gc.ca/ewh-semt/pubs/water-eau/mercury-mercure/
i-eng.php. Accessed 25 Feb 2013.
HESIS (2008). Understanding toxic substances. Hazard Evaluation
System and Information Service, California Department
of Public Health, http://www.cdph.ca.gov/programs/
hesis/Documents/introtoxsubstances.pdf.
Higueras, P., Esbrı´, J. M., Oyarzun, R., Llanos, W., Martı´nez-
Coronado, A., Lillo, J., et al. (2013). Industrial and natural
sources of gaseous elemental mercury in the Almade´n
District (Spain): An updated report on this issue after the
cease of mining and metallurgical activities in 2003 and
major land reclamation works. Environmental Research,
125, 197–208.
Higueras, P., Llanos, W., Garcı´a, M. E., Milla´n, R., & Serrano,
C. (2012). Mercury vapours emissions from the Ingenios in
Potosı´ (Bolivia). Journal of Geochemical Exploration,
116, 1–7.
Higueras, P., Oyarzun, R., Lillo, J., Oyarzu´n, J., & Maturana, H.
(2005). Atmospheric mercury data for the Coquimbo region,
Chile: influence of mineral deposits and metal recovery
practices. Atmospheric Environment, 39, 7587–7596.
Higueras, P., Oyarzun, R., Lillo, J., Sa´nchez Herna´ndez, J. C.,
Molina, J. A., Esbrı´, J. M., et al. (2006). The Almade´n
district (Spain): Anatomy of one of the world’s largest Hgcontaminated
sites. Science of the Total Environment, 356,
112–124.
Higueras, P., Oyarzun, R., Munha´, J., & Morata, D. (2000).
Palaeozoic magmatic-related hydrothermal activity in the
Almade´n syncline (Spain): a long-lasting Silurian to
Devonian process? Trans. Instn. Min. Metall. Sect. B:
Applied Earth Science, 109, 199–202.
Higueras, P., Oyarzun, R., Oyarzu´n, J., Maturana,H., Lillo, J.,
& Morata, D. (2004). Environmental assessment of
copper–gold–mercury mining in the Andacollo and Punitaqui
districts, northern Chile. Applied Geochemistry,
19, 1855–1864.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X.,
Talbot, R., et al. (2010). Global atmospheric model for
mercury including oxidation by bromine atoms. Atmospheric
Chemistry and Physics, 10, 12037–12057.
Kasznia-Kocot, J., Dbkowska, B., Muszyn´ska-Graca, M.,
Brewczyn´ski, P. Z., & Złotkowska, R. (2008). Domestic
accidental mercury vapor intoxication in families. Journal
of Public Health, 30, 113.Kim, K.-H., Ebinghaus, R., Schroeder, W. H., Blanchard, P.,
Kock, H. H., Steffen, A., et al. (2005). Atmospheric mercury
concentrations from several observatory sites in the
Northern Hemisphere. Journal of Atmospheric Chemistry,
50, 1–24.
Kim, K.-H., Mishra, V. K., & Hong, S. (2006). The rapid and
continuous monitoring of gaseous elemental mercury
(GEM) behavior in ambient air. Atmospheric Environment,
40, 3281–3293.
Kock, H. H., Bieber, E., Ebinghaus, R., Thees, T. G.,&Spain, B.
(2005). Comparison of long-term trends and seasonal
variations of atmospheric mercury concentrations at the
two European coastal monitoring stations Mace Head,
Ireland, and Zingst, Germany. Atmospheric Environment,
39, 7549–7556.
Kocman, D., Vrecˇa, P., Fajon, V., & Horvat, M. (2011).
Atmospheric distribution and deposition of mercury in the
Idrija Hg mine region, Slovenia. Environmental Research,
111, 1–9.
Kotnik, J., Horvat, M., & Dizdarevicˇ, T. (2005). Current
and past mercury distribution in air over the Idrija Hg
mine region, Slovenia. Atmospheric Environment, 39,
7570–7579.
Ladle, R. J., Jepson, P., Arau´jo, M. B., & Whittaker, R. J.
(2004a). Dangers of crying wolf over risk of extinctions.
Nature, 428, 799.
Ladle, R.J., Jepson, P., Arau´jo, M.B.,& Whittaker, R.J. (2004b).
Crying wolf on climate change and extinction. School of
Geography and the Environment (Oxford University),
Selected Publications and Output, Supplemental Publications,
http://www.geog.ox.ac.uk/research/biodiversity/output.
html#supplements. Accessed 25 Feb 2013.
Lambertsson, L., & Matsnilsson, M. (2006). Organic Material:
The primary control on mercury methylation and ambient
methyl mercury concentrations in estuarine sediments.
Environmental Science and Technology, 40, 1822–1829.
Limpert, E., Stahel, W. A., & Abbot, M. (2001). Log-normal
distributions across the sciences: keys and clues. BioScience,
51, 341–352.
Lin, C.-J., & Pehkonen, S. O. (1999). The chemistry of atmospheric
mercury: A review. Atmospheric Environment, 33,
2067–2079.
Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury
speciation: concentrations and behavior of reactive gaseous
mercury in ambient air. Environmental Science &
Technology, 32, 49–57.
Lindqvist, O., & Rodhe, H. (1985). Atmosphere mercury: A
review. TELLUS, 37 B, 136–159.
Llanos, W., Higueras, P., Oyarzun, R., Esbrı´, J. M., Lo´pez
Berdonces, E. M., Garcı´a Noguero, A., et al. (2010). The
MERSADE (European Union) project: Testing procedures
and environmental impact for the safe storage of liquid
mercury in the Almade´n district, Spain. Science of the Total
Environment, 408, 4901–4905.
Loppi, S. (2001). Environmental distribution of mercury and
other trace elements in the geothermal area of Bagnore (Mt.
Amiata, Italy). Chemosphere, 45, 991–995.
Loredo, J., Ordon˜ez, A., Gallego, J. R., Baldo, C., & Garcı´a-
Iglesias, J. (1999). Geochemical characterisation of mercury
mining spoil heaps in the area of Mieres (Asturias,
northern Spain). Journal of Geochemical Exploration, 67,
377–390.
Martı´nez-Coronado, A., Oyarzun, R., Esbrı´, J. M., Llanos, W., &
Higueras, P. (2011). Sampling high to extremely high Hg
concentrations at the Cerco de Almadenejos, Almade´n
mining district (Spain): The old metallurgical precinct (1794
to 1861 AD) and surrounding areas. Journal of Geochemical
Exploration, 109, 70–77.
Mashyanov, N. R., & Reshetov, V. V. (1995). Geochemical
ecological monitoring using remote sensing technique.
Science of the Total Environment, 159, 169–175.
Mercury Policy Project. (2008). U.S. joins EU in banning
mercury exports; environmentalists applaud bi-partisan
effort. Published on line: October 15th, 2008, http://
mercurypolicy.org/?p=489. Accessed 25 Feb 2013.
Moreno, T., Querol, X., Alastuey, A., Garcı´a do Santos, S.,
Ferna´ndez Patier, R., Artin˜ano, B., et al. (2006). PM source
apportionment and trace metallic aerosol affinities during
atmospheric pollution episodes: a case study from Puertollano,
Spain. Journal of Environmental Monitoring, 8,
1060–1068.
Morteani, G., Ruggieri, G., Mo¨ller, P., & Preinfalk, Ch. (2011).
Geothermal mineralized scales in the pipe system of the
geothermal Piancastagnaio power plant (Mt. Amiata geothermal
area): a key to understand the stibnite, cinnabarite
and gold mineralization of Tuscany (central Italy). Mineralium
Deposita, 46, 197–210.
Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C., Cernichiari,
E., & Clarkson, T. W. (2000). Twenty-seven years
studying the human neurotoxicity of methylmercury
exposure. Environmental Research, 83, 275–285.
Ninomiya, T., Ohmori, H., Hashimoto, K., Tsuruta, K.,&Ekino,
S. (1995). Expansion of methylmercury poisoning outside
of Minamata: an epidemiological study on chronic methylmercury
poisoning outside of Minamata. Environmental
Research, 70, 47–50.
Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury
to the atmosphere: Global and regional inventories. Science
of the Total Environment, 304, 3–12.
O’Rourke, D., & Connolly, S. (2003). Just oil? The distribution of
environmental and social impacts of oil production and
consumption. Annual Review of Environment and Resources,
28, 587–617.
Oyarzun, R., Higueras, P., Esbrı´, J. M., & Pizarro, J. (2007).
Mercury in air and plant specimens in herbaria: A pilot
study at the MAF Herbarium in Madrid (Spain). Science of
the Total Environment, 387, 346–352.
Oyarzun, R., Lillo, J., Sa´nchez Herna´ndez, J. C., & Higueras, P.
(2005). Pre-industrial metal anomalies in ice cores: A
simplified reassessment of windborne soil dust contribution
and volcanic activity during the last glaciation. International
Geology Review, 47, 1120–1130.
Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S.
(2006). Global anthropogenic mercury emission inventory
for 2000. Atmospheric Environment 40,, 4048–4063.
Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom,
K., Wilson, S., et al. (2010). Global emission of
mercury to the atmosphere from anthropogenic sources in
2005 and projections to 2020. Atmospheric Environment,
44, 2487–2499.Palinkas, L. A., Mashyanov, N. R., Sholupov, S. E., Durn, G.,
Miko, S. (1990). Mercury in the atmosphere over rural,
urban and industrial parts of Zagreb city. Rudarsko-geolosko-
naftni zbornik, 2, 19–27.
Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock,
I. M., Pacyna, J., et al. (2013). Toward the next generation
of air quality monitoring: Mercury. Atmospheric Environment,
80, 599–611.
Pogarev, S. E., Ryzhov, V. V., Mashyanov, N. R., & Sobolev,
M. B. (1997). Mercury values in urine from inhabitants of
St. Petersburg. Water, Air, and Soil Pollution, 97, 193–198.
Pyle, D. M.,&Mather, T. A. (2003). The importance of volcanic
emissions for the global atmospheric mercury cycle.
Atmospheric Environment, 37, 5115–5124.
Richey, J. E., Devol, A. H., Wofsy, S. C., Victoria, R., &
Riberio, M. N. G. (1988). Biogenic gases and the oxidation
and reduction of carbon in Amazon River and floodplain
waters. Limnology and Oceanography, 33, 551–561.
Rossini Oliva, S., & Ferna´ndez Espinosa, A. J. (2007). Monitoring
of heavy metals in topsoils, atmospheric particles
and plant leaves to identify possible contamination sources.
Microchemical Journal, 86, 131–139.
Saleem, M., Alfred, S., Bahnisch, R. A., Coates, P., & Kearney,
D. J. (2013). Mercury poisoning from home gold
amalgam extraction. The Medical Journal of Australia,
199, 125–127.
Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D.,
Olson, M. L., Dewild, J. F., et al. (2002). Atmospheric
mercury deposition during the last 270 years: a glacial ice
core record of natural and anthropogenic sources. Environmental
Science and Technology, 36, 2303–2310.
Selin, N. E., et al. (2007). Chemical cycling and deposition of
atmospheric mercury: Global constraints from observations.
Journal of Geophysics Research D: Atmospheres,
112. Article no. D02308.
Sholupov, S. E., & Ganeyev, A. A. (1995). Zeeman absorption
spectrometry using high frequency modulated light polarization.
Spectrochim Acta B, 50, 1227–1238.
Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., &
Stroganov, A. (2004). Zeeman atomic absorption spectrometer
RA-915? for direct determination of mercury in
air and complex matrix samples. Fuel Processing Technology,
85, 473–485.
Sigler, J. M., Mao, H., & Talbot, R. (2009). Gaseous elemental
and reactive mercury in Southern New Hampshire. Atmospheric
Chemistry and Physics, 9, 1929–1942.
Sillman, S., Marsik, F., Al-Wali, K.I., Keeler, G.J., & Landis,
M.S., (2005). Models for the formation and transport of
reactive mercury: results for Florida, the Northeastern U.S.
and the Atlantic Ocean. Fifth Air Quality Conference:
Mercury, Trace Elements, SO3 and Particulate Matter,
Arlington, VA., September 19–21, 2005, http://wwwpersonal.
umich.edu/*sillman/web-publications/SillmanHg-
AQV05.pdf.
Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011).
Worldwide trend of atmospheric mercury since 1995.
Atmospheric Chemistry and Physics, 11, 4779–4787.
Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, C., Munthe, J.,
Wangberg, I., et al. (2003). Worldwide trend of atmospheric
mercury since 1977. Geophysical Research Letters,
30, 23–31.
Smith, W. R., Montopoli, G., Byerly, A., Montopoli, M., Harlow,
H., & Wheeler, A. R., I. I. I. (2013). Mercury toxicity
in wildland firefighters. Wilderness & Environmental
Medicine, 24, 141–145.
Smith, R. G., Vorwald, A. J., Patil, L. S., & Mooney, T. F., Jr.
(1970). Effects of exposure to mercury in the manufacture
of chlorine. The American Industrial Hygiene Association
Journal, 31, 687–700.
Spiegel, S. J., & Veiga, M. M. (2005). Building capacity in
small-scale mining communities: Health, ecosystem sustainability,
and the Global Mercury Project. EcoHealth, 2,
361–369.
Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., & Dommergue,
A. (2010). A review of worldwide atmospheric mercury
measurements. Atmospheric Chemistry and Physics, 10,
8245–8265.
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S.
A., & Landing, W. M. (2009). Mercury sources, distribution,
and bioavailability in the North Pacific Ocean:
Insights from data and models. Global Biogeochem. Cy.
23. Article no. GB2010.
US EPA. (2001). Environmental technology verification report:
LUMEX Ltd. mercury continuous emission monitor. U.S.
Environmental Protection Agency, http://www.epa.gov/
etv/pubs/01_vr_lumex_cem.pdf.
US EPA. (2007). Mercury Response Guidebook—Section 3.
http://www.epa.gov/epaoswer/hazwaste/mercury/pdf/
chapter3.pdf, May 2007.
US OSHA (2007). Health and safety (Hg). Occupational Hazards,
http://www.hgtech.com/HSE/HSE.htm. Acceded 25
Feb 2013.
US EPA. (2012). What is a toxic substance? Learn About
Chemicals Around Your House, US Environmental Protection
Agency, http://www.epa.gov/kidshometour/toxic.
htm. Acceded 25 Feb 2013.
Varekamp, J. C., & Buseck, P. R. (1981). Mercury emissions
from Mount St Helens during September 1980. Nature,
293, 555–556.
Vaselli, O., Higueras, P., Nisi, B., Esbrı´, J. M., Cabassi, J.,
Martı´nez-Coronado, A., et al. (2013). Distribution of
Gaseous Hg in the Mercury Mining District of Mt. Amiata
(Central Italy): a Geochemical Survey Prior the Reclamation
Project. Environmental Research, 125, 179–187.
Veiga, M. M., Bermudez, D., Pacheco-Ferreira, H., Martins
Pedroso, L. R., Gunson, A. J., Berrios, G., et al. (2005).
Mercury pollution from artisanal gold mining in Block B,
El Callao, Bolı´var State, Venezuela. In N. Pirrone & K.
Mahaffey (Eds.), Dynamics of mercury pollution on
regional and global scales: atmospheric processes. Human
exposure around the world (pp. 421–450). Norwell, Massachusetts:
Springer.
WHO. (2000). Air quality guidelines for Europe.WHORegional
Publications European Series 91, World Health Organization
Regional Office for Europe, Copenhagen, 288 pp.
WHO (2005). Mercury in drinking-water. Background document
for development of WHO Guidelines for Drinkingwater
Quality, World Health Organization, http://www.
who.int/water_sanitation_health/dwq/chemicals/mercury/
en/. Acceded 25 Feb 2013.
Yasutake, A., Cheng, J. P., Kiyono, M., Uraguchi, S., Liu, X.,
Miura, K., et al. (2011). Rapid monitoring of mercury in airfrom an organic chemical factory in China using a portable
mercury analyzer. The Scientific World Journal, 11,
1630–1640.
Yuen, E., Cortez, P. S., & Goebel, P. J. (2000). Family poisoned
by mercury vapor inhalation. The American Journal of
Emergency Medicine, 18, 599–602.
Z ˇ
agar, D., Knap, A., Warwick, J. J., Rajar, R., Horvat, M., &
C ˇ
etina, M. (2006). Modelling of mercury transport and
transformation processes in the Idrijca and Socˇa river
system. Science of the Total Environment, 368, 143–163.
Type
article
File(s)
No Thumbnail Available
Request a copy
Name

Higueras et al 2013.pdf

Description
Main article
Size

1.09 MB

Format

Adobe PDF

Checksum (MD5)

bb16c129e1b902568c2a3250f112d6af

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback