Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia
Author(s)
Language
English
Obiettivo Specifico
3T. Sorgente sismica
Status
Published
JCR Journal
JCR Journal
Issue/vol(year)
/223 (2020)
ISSN
0956-540X
Electronic ISSN
1365-246X
Pages (printed)
777–791
Date Issued
August 6, 2020
Subjects
Abstract
Seven years after the beginning of a massive wastewater injection project in eastern Colombia, local earthquake activity increased significantly. The field operator and the Colombian Geological Survey immediately reinforced the monitoring of the area. Our analysis of the temporal evolution of the seismic and injection data together with our knowledge of the geological parameters of the region indicate that the surge of seismicity is being induced by the re-injection of produced water into the same three producing reservoirs. Earthquake activity began on known faults once disposal rates had reached a threshold of ∼2 × 106 m3 of water per month. The average reservoir pressure had remained constant at 7.6 MPa after several years of production, sustained by a large, active aquifer. Surface injection pressures in the seismically active areas remain below 8.3 MPa, a value large enough to activate some of the faults. Since faults are mapped throughout the region and many do not have seismicity on them, we conclude that the existence of known faults is not the only control on whether earthquakes are generated. Stress conditions of these faults are open to future studies. Earthquakes are primarily found in four clusters, located near faults mapped by the operator. The hypocentres reveal vertical planes with orientations consistent with focal mechanisms of these events. Stress inversion of the focal mechanisms gives a maximum compression in the direction ENE-WSW, which is in agreement with borehole breakout measurements. Since the focal mechanisms of the earthquakes are consistent with the tectonic stress regime, we can conclude that the seismicity is resulting from the activation of critically stressed faults. Slip was progressive and seismic activity reached a peak before declining to few events per month. The decline in seismicity suggests that most of the stress has been relieved on the main faults. The magnitude of a large majority of the recorded earthquakes was lower than 4, as the pore pressure disturbance did not reach the mapped large faults whose activation might have resulted in larger magnitude earthquakes. Our study shows that a good knowledge of the local fault network and conditions of stress is of paramount importance when planning a massive water disposal program. These earthquakes indicate that while faults provide an opportunity to dispose produced water at an economically attractive volume–pressure ratio, the possibility of induced seismicity must also be considered.
Sponsors
Servicio Geológico Colombiano (SGC)
References
Aki K., Richards P.G., 1980. Quantitative Seismology: Theory and Methods, 2nd edn, Vol. I, W.H. Freeman and Co, San Francisco, 557pp.
Google Scholar
Bachmann C.E., Wiemer S., Woessner J., Hainzl S., 2011. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems, Geophys. J. Int., 186(2), 793–807. 10.1111/j.1365-246X.2011.05068.x.10.1111/j.1365-246X.2011.05068.x
Google ScholarCrossrefSearch ADSCrossref
Bailey I.W., Ben-Zion Y., Becker T.W., Holschneider M., 2010. Quantifying focal mechanism heterogeneity for fault zones in central and southern California, Geophys. J. Int., 183(1), 433–450. 10.1111/j.1365-246X.2010.04745.x.10.1111/j.1365-246X.2010.04745.x
Google ScholarCrossrefSearch ADSCrossref
Barbour A.J., Norbeck J.H., Rubinstein J.L., 2017. The effects of varying injection rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee earthquake, Seismol. Res. Lett., 88(4), 1040–1053. 10.1785/0220170003.10.1785/0220170003
Google ScholarCrossrefSearch ADSCrossref
Biot M.A., 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. acoust. Soc. Am., 28(2), 168–178. 10.1121/1.1908239
Google ScholarCrossrefSearch ADSCrossref
Chin L.Y., Raghavan R., Thomas L.K., 1998. Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability, in SPE International Oil and Gas Conference and Exhibition in China, Society of Petroleum Engineers, 32–45. 10.2118/48857-MS.
Google ScholarCrossrefSearch ADSGoogle ScholarCrossref
Cooper M.A. et al. , 1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia, AAPG Bull., 79(10), 1421–1442.
Dasilva A., Gomez Y., Villa M.A., Yoris F., Morales D., 2013. Oil distribution in the Carbonera formation, Arenas Basales Unit. A case study in the Quifa and Rubiales Fields, Eastern Llanos Basin, Colombia, in Adapted from Extended Abstract Prepared for a Poster Presentation at AAPG International Conference and Exhibition, Cartagena, Colombia , AAPG Datapages Inc., Search and Discovery, 1–10.
Google Scholar
Ellsworth W.L., 2013. Injection-induced earthquakes. Science, 341(6142), 10.1126/science.1225942.10.1126/science.1225942
Crossref
Evans D., 1966. The Denver Area earthquakes and the rocky mountain arsenal disposal well, Mt. Geol., 3(1), 23–36.
Garcia-Aristizabal A., 2018. Modelling fluid-induced seismicity rates associated with fluid injections: examples related to fracture stimulations in geothermal areas. Geophys. J. Int., 215(1), 471–493. 10.1093/gji/ggy284.10.1093/gji/ggy284
Google ScholarCrossrefSearch ADSCrossref
Garcia-Aristizabal A., Caciagli M., Selva J., 2016. Considering uncertainties in the determination of earthquake source parameters from seismic spectra. Geophys. J. Int., 207(2), 691–701. 10.1093/gji/ggw303.10.1093/gji/ggw303
Google ScholarCrossrefSearch ADSCrossref
Goebel T.H., Brodsky E., 2018. The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405),899–904.,10.1126/science.aat5449.10.1126/science.aat5449
Google ScholarCrossrefSearch ADSPubMedCrossref
Gómez-Alba S., Fajardo-Zarate C., Vargas C., 2015. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia), J. South Amer. Earth Sci., 71, 320–332. 10.1016/j.jsames.2015.08.010.10.1016/j.jsames.2015.08.010
Google ScholarCrossrefSearch ADSCrossref
Gómez-Alba S., Vargas C., Zang A., 2020. Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015, Geophys. J. Int., 220, 335–344. 10.1093/gji/ggz433.10.1093/gji/ggz433
Google ScholarCrossrefSearch ADSCrossref
Gómez Y., Yoris F., Rodriguez J., Portillo F., Araujo Y., 2010. Aspectos hidrodinámicos, estructurales y estratigráficos del Campo Rubiales, Colombia, Rev. Geo Petróleo ACGGP,9, 4–10.
Healy J., Rubey W., Griggs D., Raleigh C., 1968. The Denver Earthquakes, Science, 161(3848), 1301–1310. 10.1126/science.161.3848.1301.10.1126/science.161.3848.1301
Google ScholarCrossrefSearch ADSPubMedCrossref
INGRAIN AANH, 2012. CUENCA LLANOS ORIENTALES Integración Geológica de la Digitalización y Análisis de Núcleos, Public Report of the Agencia Nacional de Hidrocarburos (ANH) of Colombia, Colombia, 209, http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/5.%20Informe%20Final%20Llanos.pdf (last accessed: July 2020).
Google Scholar
Keranen K.M., Weingarten M., Abers G.A., Bekins B.A., Ge S., 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448–451. 10.1126/science.1255802.10.1126/science.1255802
Google ScholarCrossrefSearch ADSPubMedCrossref
Langenbruch C., Zoback M.D., 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?, Science Advances, 2(11), 1–9.,10.1126/sciadv.1601542.10.1126/sciadv.1601542
Google ScholarCrossrefSearch ADSCrossref
Lei X.L, Yu G., Ma S., Wen X., Wang Q., 2008. Earthquakes induced by water injection at 3 km depth within the Rongchang gas field, Chongqing, China, J. geophys. Res., 113(B10310), 1–12. 10.1029/2008JB005604.
Crossref
Leptokaropoulos K., Karakostas V., Papadimitriou E., Adamaki A., Tan O., Inan S., 2013. A homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination., Bull. seism. Soc. Am., 103(5), 2739–2751. 10.1785/0120120174.10.1785/0120120174
Google ScholarCrossrefSearch ADSCrossref
MacQueen J., 1967, Some methods for classification and analysis of multivariate observations. In Cam L. Le, Neyman J.eds, Proc. Berkeley Symp. on Mathematical Statistics and Probability, Vol. 1, University of California Press, p. 281–297.
Google Scholar
Mena B., Wiemer S., Bachmann C., 2013. Building robust models to forecast the induced seismicity related to geothermal reservoir enhancement, Bull. seism. Soc. Am., 103(1), 383–393. 10.1785/0120120102.10.1785/0120120102
Google ScholarCrossrefSearch ADSCrossref
Michael A.J., 1987. Use of focal mechanisms to determine stress: a control study, J. geophys. Res., 92(B1), 357–368. 10.1029/JB092iB01p00357.10.1029/JB092iB01p00357
Google ScholarCrossrefSearch ADSCrossref
Mukuhira Y., Dinske C., Asanuma H., Ito T., Häring M.O., 2016. Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel, Switzerland, J. geophys. Res. Solid Earth, 122:(1), 411–435. 10.1002/2016JB013338.10.1002/2016JB013338
Crossref
Nguyen L.M., Lin T.L., Wu Y.M., Huang B.S., Chang C.H., Huang W.G., Le S.T., Dinh V.T., 2011. The first ML scale for North of Vietnam, J. Asian Earth Sci., 40(1), 279–286. 10.1016/j.jseaes.2010.07.005.10.1016/j.jseaes.2010.07.005
Google ScholarCrossrefSearch ADSCrossref
Norbeck J.H., Rubinstein J.L., 2018. Hydromechanical earthquake nucleation model forecasts onset, peak, and falling rates of induced seismicity in Oklahoma and Kansas, Geophys. Res. Lett., 45(7), 2963–2975. 10.1002/2017GL076562.10.1002/2017GL076562
Google ScholarCrossrefSearch ADSCrossref
Orlecka-Sikora B. et al. , 2020. An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation, Sci. Data, 7(89), 1–16. 10.1038/s41597-020-0429-3
Google ScholarPubMedCrossref
Pacific Rubiales Energy, Meta Petroleum Ltd., Pacific Rubiales Energy y ECOPETROL, Contrato de Asociación Rubiales-Pirirí, 2009. Estudio integrado de yacimientos campo Rubiales, Reporte del modelo estructural, Bogota, D.C., Colombia, 1–40.
Google Scholar
Petersen M.D. et al. , 2018. 2018 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes, Seismol. Res. Lett., 89(3), 1049–1061. 10.1785/0220180005.10.1785/0220180005
Google ScholarCrossrefSearch ADSCrossref
Raleigh C.B., Healy J.H., Bredehoeft J.D., 1976. An experiment in earthquake control at Rangely, Colorado, Science, 191(4233), 1230–1237. 10.1126/science.191.4233.1230.10.1126/science.191.4233.1230
Google ScholarCrossrefSearch ADSPubMedCrossref
Reasenberg P.A., Oppenheimer D., 1985. FPFIT, FPPLOT and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions, Open-File Rep, U.S. Geol. Surv., 85–739.
Google Scholar
Rice J.R., Cleary M.P., 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14(2), 227–241. 10.1029/RG014i002p00227.10.1029/RG014i002p00227
Google ScholarCrossrefSearch ADSCrossref
Rubinstein J.L., Ellsworth W.L., Dougherty S.L., 2018. The 2013–2016 induced earthquakes in Harper and Sumner Counties, Southern Kansas, Bull. seism. Soc. Am., 108(2), 674–689. 10.1785/0120170209.10.1785/0120170209
Google ScholarCrossrefSearch ADSCrossref
Rubinstein J.L., Ellsworth W.L., McGarr A., Benz H.M., 2014. The 2001–present induced earthquake sequence in the Raton basin of northern New Mexico and southern Colorado, Bull. seism. Soc. Am., 104(5), 2162–2181. 10.1785/0120140009.10.1785/0120140009
Google ScholarCrossrefSearch ADSCrossref
Schwartz F.W., Zhang H., 2002. Groundwater, John Wiley & Sons Inc, New York, 592pp.
Google Scholar
Shapiro S.A., 2015. Fluid-Induced Seismicity, Cambridge University Press, 289pp.
Google ScholarCrossrefSearch ADSGoogle Scholar
Shapiro S.A., Huenges E., Borm G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emissions at the KTB site, Geophys. J. Int., 131(2), F15–F18. 10.1111/j.1365-246X.1997.tb01215.x.10.1111/j.1365-246X.1997.tb01215.x
Google ScholarCrossrefSearch ADSCrossref
Shapiro S.A., Rothert E., Rath V., Rindschwentner J. 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, 67(10), 212–220. 10.1190/1.1451597.10.1190/1.1451597
Google ScholarCrossrefSearch ADSCrossref
Stabile T.A., Giocoli A., Perrone A., Piscitelli S., Lapenna V., 2014. Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the High Agri Valley (southern Italy), Geophys. Res. Lett., 41(16), 5847–5854. 10.1002/2014GL060948.10.1002/2014GL060948
Google ScholarCrossrefSearch ADSCrossref
Van Der Kamp G., Gale J.E., 1983, Theory of earth tide and barometric effects in porous formations with compressible grains, Water Resour. Res., 19(2), 538–544. 10.1029/WR019i002p00538.10.1029/WR019i002p00538
Google ScholarCrossrefSearch ADSCrossref
Vavryčuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophys. J. Int., 199(1), 69–77. 10.1093/gji/ggu224.10.1093/gji/ggu224
Google ScholarCrossrefSearch ADSCrossref
Villegas M.E., Bachu S., Ramon J.C., Underschultz J.R., 1994, Flow of formation waters in the Cretaceous-Miocene succession of the Llanos Basin, Colombia, AAPG Bull., 78(12), 1843–1862.
Walsh F.R.I., Zoback M.D., 2015. Oklahoma's recent earthquakes and saltwater disposal, Sci. Adv., 1(5), 1–9. 10.1126/sciadv.1500195.10.1126/sciadv.1500195
Google ScholarCrossrefSearch ADSCrossref
Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. seism. Soc. Am., 90(4), 859–869. 10.1785/0119990114.10.1785/0119990114
Google ScholarCrossrefSearch ADSCrossref
Yeck W.L., Weingarten M., Benz H.M., McNamara D.E., Bergman E.A., Herrmann R.B., Rubinstein J.L., Earle P.S., 2016. Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure, Geophys. Res. Lett., 43(19), 10198–110207. 10.1002/2016GL070861.10.1002/2016GL070861
Google ScholarCrossrefSearch ADSCrossref
Google Scholar
Bachmann C.E., Wiemer S., Woessner J., Hainzl S., 2011. Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems, Geophys. J. Int., 186(2), 793–807. 10.1111/j.1365-246X.2011.05068.x.10.1111/j.1365-246X.2011.05068.x
Google ScholarCrossrefSearch ADSCrossref
Bailey I.W., Ben-Zion Y., Becker T.W., Holschneider M., 2010. Quantifying focal mechanism heterogeneity for fault zones in central and southern California, Geophys. J. Int., 183(1), 433–450. 10.1111/j.1365-246X.2010.04745.x.10.1111/j.1365-246X.2010.04745.x
Google ScholarCrossrefSearch ADSCrossref
Barbour A.J., Norbeck J.H., Rubinstein J.L., 2017. The effects of varying injection rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee earthquake, Seismol. Res. Lett., 88(4), 1040–1053. 10.1785/0220170003.10.1785/0220170003
Google ScholarCrossrefSearch ADSCrossref
Biot M.A., 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. acoust. Soc. Am., 28(2), 168–178. 10.1121/1.1908239
Google ScholarCrossrefSearch ADSCrossref
Chin L.Y., Raghavan R., Thomas L.K., 1998. Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability, in SPE International Oil and Gas Conference and Exhibition in China, Society of Petroleum Engineers, 32–45. 10.2118/48857-MS.
Google ScholarCrossrefSearch ADSGoogle ScholarCrossref
Cooper M.A. et al. , 1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia, AAPG Bull., 79(10), 1421–1442.
Dasilva A., Gomez Y., Villa M.A., Yoris F., Morales D., 2013. Oil distribution in the Carbonera formation, Arenas Basales Unit. A case study in the Quifa and Rubiales Fields, Eastern Llanos Basin, Colombia, in Adapted from Extended Abstract Prepared for a Poster Presentation at AAPG International Conference and Exhibition, Cartagena, Colombia , AAPG Datapages Inc., Search and Discovery, 1–10.
Google Scholar
Ellsworth W.L., 2013. Injection-induced earthquakes. Science, 341(6142), 10.1126/science.1225942.10.1126/science.1225942
Crossref
Evans D., 1966. The Denver Area earthquakes and the rocky mountain arsenal disposal well, Mt. Geol., 3(1), 23–36.
Garcia-Aristizabal A., 2018. Modelling fluid-induced seismicity rates associated with fluid injections: examples related to fracture stimulations in geothermal areas. Geophys. J. Int., 215(1), 471–493. 10.1093/gji/ggy284.10.1093/gji/ggy284
Google ScholarCrossrefSearch ADSCrossref
Garcia-Aristizabal A., Caciagli M., Selva J., 2016. Considering uncertainties in the determination of earthquake source parameters from seismic spectra. Geophys. J. Int., 207(2), 691–701. 10.1093/gji/ggw303.10.1093/gji/ggw303
Google ScholarCrossrefSearch ADSCrossref
Goebel T.H., Brodsky E., 2018. The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405),899–904.,10.1126/science.aat5449.10.1126/science.aat5449
Google ScholarCrossrefSearch ADSPubMedCrossref
Gómez-Alba S., Fajardo-Zarate C., Vargas C., 2015. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia), J. South Amer. Earth Sci., 71, 320–332. 10.1016/j.jsames.2015.08.010.10.1016/j.jsames.2015.08.010
Google ScholarCrossrefSearch ADSCrossref
Gómez-Alba S., Vargas C., Zang A., 2020. Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015, Geophys. J. Int., 220, 335–344. 10.1093/gji/ggz433.10.1093/gji/ggz433
Google ScholarCrossrefSearch ADSCrossref
Gómez Y., Yoris F., Rodriguez J., Portillo F., Araujo Y., 2010. Aspectos hidrodinámicos, estructurales y estratigráficos del Campo Rubiales, Colombia, Rev. Geo Petróleo ACGGP,9, 4–10.
Healy J., Rubey W., Griggs D., Raleigh C., 1968. The Denver Earthquakes, Science, 161(3848), 1301–1310. 10.1126/science.161.3848.1301.10.1126/science.161.3848.1301
Google ScholarCrossrefSearch ADSPubMedCrossref
INGRAIN AANH, 2012. CUENCA LLANOS ORIENTALES Integración Geológica de la Digitalización y Análisis de Núcleos, Public Report of the Agencia Nacional de Hidrocarburos (ANH) of Colombia, Colombia, 209, http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/5.%20Informe%20Final%20Llanos.pdf (last accessed: July 2020).
Google Scholar
Keranen K.M., Weingarten M., Abers G.A., Bekins B.A., Ge S., 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448–451. 10.1126/science.1255802.10.1126/science.1255802
Google ScholarCrossrefSearch ADSPubMedCrossref
Langenbruch C., Zoback M.D., 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?, Science Advances, 2(11), 1–9.,10.1126/sciadv.1601542.10.1126/sciadv.1601542
Google ScholarCrossrefSearch ADSCrossref
Lei X.L, Yu G., Ma S., Wen X., Wang Q., 2008. Earthquakes induced by water injection at 3 km depth within the Rongchang gas field, Chongqing, China, J. geophys. Res., 113(B10310), 1–12. 10.1029/2008JB005604.
Crossref
Leptokaropoulos K., Karakostas V., Papadimitriou E., Adamaki A., Tan O., Inan S., 2013. A homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination., Bull. seism. Soc. Am., 103(5), 2739–2751. 10.1785/0120120174.10.1785/0120120174
Google ScholarCrossrefSearch ADSCrossref
MacQueen J., 1967, Some methods for classification and analysis of multivariate observations. In Cam L. Le, Neyman J.eds, Proc. Berkeley Symp. on Mathematical Statistics and Probability, Vol. 1, University of California Press, p. 281–297.
Google Scholar
Mena B., Wiemer S., Bachmann C., 2013. Building robust models to forecast the induced seismicity related to geothermal reservoir enhancement, Bull. seism. Soc. Am., 103(1), 383–393. 10.1785/0120120102.10.1785/0120120102
Google ScholarCrossrefSearch ADSCrossref
Michael A.J., 1987. Use of focal mechanisms to determine stress: a control study, J. geophys. Res., 92(B1), 357–368. 10.1029/JB092iB01p00357.10.1029/JB092iB01p00357
Google ScholarCrossrefSearch ADSCrossref
Mukuhira Y., Dinske C., Asanuma H., Ito T., Häring M.O., 2016. Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel, Switzerland, J. geophys. Res. Solid Earth, 122:(1), 411–435. 10.1002/2016JB013338.10.1002/2016JB013338
Crossref
Nguyen L.M., Lin T.L., Wu Y.M., Huang B.S., Chang C.H., Huang W.G., Le S.T., Dinh V.T., 2011. The first ML scale for North of Vietnam, J. Asian Earth Sci., 40(1), 279–286. 10.1016/j.jseaes.2010.07.005.10.1016/j.jseaes.2010.07.005
Google ScholarCrossrefSearch ADSCrossref
Norbeck J.H., Rubinstein J.L., 2018. Hydromechanical earthquake nucleation model forecasts onset, peak, and falling rates of induced seismicity in Oklahoma and Kansas, Geophys. Res. Lett., 45(7), 2963–2975. 10.1002/2017GL076562.10.1002/2017GL076562
Google ScholarCrossrefSearch ADSCrossref
Orlecka-Sikora B. et al. , 2020. An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation, Sci. Data, 7(89), 1–16. 10.1038/s41597-020-0429-3
Google ScholarPubMedCrossref
Pacific Rubiales Energy, Meta Petroleum Ltd., Pacific Rubiales Energy y ECOPETROL, Contrato de Asociación Rubiales-Pirirí, 2009. Estudio integrado de yacimientos campo Rubiales, Reporte del modelo estructural, Bogota, D.C., Colombia, 1–40.
Google Scholar
Petersen M.D. et al. , 2018. 2018 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes, Seismol. Res. Lett., 89(3), 1049–1061. 10.1785/0220180005.10.1785/0220180005
Google ScholarCrossrefSearch ADSCrossref
Raleigh C.B., Healy J.H., Bredehoeft J.D., 1976. An experiment in earthquake control at Rangely, Colorado, Science, 191(4233), 1230–1237. 10.1126/science.191.4233.1230.10.1126/science.191.4233.1230
Google ScholarCrossrefSearch ADSPubMedCrossref
Reasenberg P.A., Oppenheimer D., 1985. FPFIT, FPPLOT and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions, Open-File Rep, U.S. Geol. Surv., 85–739.
Google Scholar
Rice J.R., Cleary M.P., 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14(2), 227–241. 10.1029/RG014i002p00227.10.1029/RG014i002p00227
Google ScholarCrossrefSearch ADSCrossref
Rubinstein J.L., Ellsworth W.L., Dougherty S.L., 2018. The 2013–2016 induced earthquakes in Harper and Sumner Counties, Southern Kansas, Bull. seism. Soc. Am., 108(2), 674–689. 10.1785/0120170209.10.1785/0120170209
Google ScholarCrossrefSearch ADSCrossref
Rubinstein J.L., Ellsworth W.L., McGarr A., Benz H.M., 2014. The 2001–present induced earthquake sequence in the Raton basin of northern New Mexico and southern Colorado, Bull. seism. Soc. Am., 104(5), 2162–2181. 10.1785/0120140009.10.1785/0120140009
Google ScholarCrossrefSearch ADSCrossref
Schwartz F.W., Zhang H., 2002. Groundwater, John Wiley & Sons Inc, New York, 592pp.
Google Scholar
Shapiro S.A., 2015. Fluid-Induced Seismicity, Cambridge University Press, 289pp.
Google ScholarCrossrefSearch ADSGoogle Scholar
Shapiro S.A., Huenges E., Borm G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emissions at the KTB site, Geophys. J. Int., 131(2), F15–F18. 10.1111/j.1365-246X.1997.tb01215.x.10.1111/j.1365-246X.1997.tb01215.x
Google ScholarCrossrefSearch ADSCrossref
Shapiro S.A., Rothert E., Rath V., Rindschwentner J. 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, 67(10), 212–220. 10.1190/1.1451597.10.1190/1.1451597
Google ScholarCrossrefSearch ADSCrossref
Stabile T.A., Giocoli A., Perrone A., Piscitelli S., Lapenna V., 2014. Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the High Agri Valley (southern Italy), Geophys. Res. Lett., 41(16), 5847–5854. 10.1002/2014GL060948.10.1002/2014GL060948
Google ScholarCrossrefSearch ADSCrossref
Van Der Kamp G., Gale J.E., 1983, Theory of earth tide and barometric effects in porous formations with compressible grains, Water Resour. Res., 19(2), 538–544. 10.1029/WR019i002p00538.10.1029/WR019i002p00538
Google ScholarCrossrefSearch ADSCrossref
Vavryčuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophys. J. Int., 199(1), 69–77. 10.1093/gji/ggu224.10.1093/gji/ggu224
Google ScholarCrossrefSearch ADSCrossref
Villegas M.E., Bachu S., Ramon J.C., Underschultz J.R., 1994, Flow of formation waters in the Cretaceous-Miocene succession of the Llanos Basin, Colombia, AAPG Bull., 78(12), 1843–1862.
Walsh F.R.I., Zoback M.D., 2015. Oklahoma's recent earthquakes and saltwater disposal, Sci. Adv., 1(5), 1–9. 10.1126/sciadv.1500195.10.1126/sciadv.1500195
Google ScholarCrossrefSearch ADSCrossref
Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. seism. Soc. Am., 90(4), 859–869. 10.1785/0119990114.10.1785/0119990114
Google ScholarCrossrefSearch ADSCrossref
Yeck W.L., Weingarten M., Benz H.M., McNamara D.E., Bergman E.A., Herrmann R.B., Rubinstein J.L., Earle P.S., 2016. Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure, Geophys. Res. Lett., 43(19), 10198–110207. 10.1002/2016GL070861.10.1002/2016GL070861
Google ScholarCrossrefSearch ADSCrossref
Description
This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy.
All rights reserved.
All rights reserved.
Type
article
File(s)![Thumbnail Image]()
Loading...
Name
2020_GJI_ggaa326.pdf
Size
3.35 MB
Format
Adobe PDF
Checksum (MD5)
f8cb87b3fd1e3f615c644e55501a945f