Options
The INGV-CMCC Seasonal Prediction System: improved ocean initial conditions
Author(s)
Language
English
Obiettivo Specifico
3.7. Dinamica del clima e dell'oceano
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/138 (2010)
ISSN
0027-0644
Electronic ISSN
1520-0493
Publisher
American Meteorological Society
Pages (printed)
2930-2952
Issued date
2010
Abstract
The development of the INGV (Istituto Nazionale di Geofisica e Vulcanologia)-CMCC (Centro
Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is
documented. In this SPS the ocean initial conditions estimation includes a Reduced Order
Optimal Interpolation procedure for the assimilation of temperature and salinity profiles
at the global scale. Nine member ensemble forecasts have been produced for the period
1991-2003 for two starting dates per year in order to assess the impact of the subsurface
assimilation in the ocean for initialization.
Comparing the results with control simulations (i.e.: without assimilation of subsurface
profiles during ocean initialization), we showed that the improved ocean initialization increases
the skill in the prediction of tropical Pacific SSTs in our system for boreal winter
forecasts. Considering the forecast of the El Ni˜no 1997-1998, the data assimilation in the
ocean initial conditions leads to a considerable improvement in the representation of its onset
and development.
Our results indicate a better prediction of global scale surface climate anomalies for the
forecasts started in November, probably due to the improvement in the tropical Pacific. For
boreal winter, in both tropics and extra tropics, we show significant increases in the capability
of the system to discriminate above normal and below normal temperature anomalies.
Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is
documented. In this SPS the ocean initial conditions estimation includes a Reduced Order
Optimal Interpolation procedure for the assimilation of temperature and salinity profiles
at the global scale. Nine member ensemble forecasts have been produced for the period
1991-2003 for two starting dates per year in order to assess the impact of the subsurface
assimilation in the ocean for initialization.
Comparing the results with control simulations (i.e.: without assimilation of subsurface
profiles during ocean initialization), we showed that the improved ocean initialization increases
the skill in the prediction of tropical Pacific SSTs in our system for boreal winter
forecasts. Considering the forecast of the El Ni˜no 1997-1998, the data assimilation in the
ocean initial conditions leads to a considerable improvement in the representation of its onset
and development.
Our results indicate a better prediction of global scale surface climate anomalies for the
forecasts started in November, probably due to the improvement in the tropical Pacific. For
boreal winter, in both tropics and extra tropics, we show significant increases in the capability
of the system to discriminate above normal and below normal temperature anomalies.
References
Alessandri, A. and A. Navarra, 2008: On the coupling between vegetation and rainfall interannual
anomalies: Possible contributions to seasonal rainfall predictability over land areas.
GRL, 35, L02 718, doi:10.1029/2007GL032415.
Alves, O., M. Balmaseda, D. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical
seasonal forecasts to ocean initial conditions. QJRMS, 130, 647–667.
Balmaseda, M., D. Anderson, and A. Vidard, 2007: Impact of argo on analyses of the global
ocean. GRL, 34, L16 605, doi:10.1029/2007GL0304452.
Bellucci, A., S. Masina, P. D. Pietro, and A. Navarra, 2007: Using temperature-salinity
relations in a global ocean implementation of a multivariate data assimilation scheme.
MWR, 135, 3785–3807.
Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala,
2009: The era-interim archive. Technical report ERA Report Series No.1, ECMWF, 16
pp.
Cane, M., S. Zebiak, and S. Dolan, 1986: Experimental forecasts of el ni˜no. NAT, 321,
827–832.
Chen, D., S. Zebiak, and A. Busalacchi, 1995: An improved procedure for el ni˜no forecasting:
Implications for predictability. SCI, 269, 1699–1702.
Ferranti, L. and P. Viterbo, 2003: The european summer of 2003: Sensitivity to soil water
initial conditions. JCLI, 19, 3659–3680.
Gualdi, S., A. Alessandri, and A. Navarra, 2004: Impact of atmospheric horizontal resolution
on el ni˜no southern oscillation forecasts. TELLUS, 57, 357–374.
Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003a: The interannual
variability in the tropical indian ocean as simulated by a cgcm. CDYN, 20, 567–582.
Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003b: Assessment of the tropical
indo-pacific climate in the sintex cgcm. Ann. Geophys., 46, 1–26.
Ingleby, B. and M. Huddleston, 2007: Quality control of ocean profiles: historical and realtime
data. JMS, 65, 158–175.
Ji, M. and A. Leetmaa, 1995: Impact of data assimilation on ocean initialization and el ni˜no
prediction. MWR, 125, 742–753.
Jin, E. and J. Kinter, 2008: Characteristics of tropical pacific sst predictability in coupled
gcm forecasts using the ncep cfs. CDYN, 32, 675–691, doi:10.1007/s00382-008-0418-2.
Kim, H., I. Kang, B. Wang, and J. Lee, 2007: Interannual variations of the boreal summer
intraseasonal variability predicted by ten atmosphere. CDYN, 30, 485–496, doi:10.1007/
s00382-007-0292-3.
Kirtman, B. P. and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy
for cgcms. GRL, 29, 17–20, doi:10.1029/2002GL014834.
Koster, R. D. and coauthors, 2004: Regions of strong coupling between soil moisture and
precipitation. SCI, 305, 1138–1140.
Koster, R. D. and coauthors, 2006: Glace: The global land-atmosphere coupling experiment.
part i: Overview. JHM, 7, 590–610.
Latif, M., et al., 1998: A review of the predictability and prediction of enso. JMS, 103,
14 375–14 393.
Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: A review of the
predictability and prediction of enso. JCLI, 18, 2344–2360.
McPhaden, M. J., 1999: Genesys and evolution of the 1997-98 el ni˜no. SCI, 283, 950–954.
McPhaden, M. J., et al., 1998: The tropical ocean-global atmosphere observing system: A
decade of progress. JGR, 103, 14 169–14 240.
Navarra, A., 2002: Ensembles, forecasts and predictability. Ocean forecasting: conceptual
basis and applications, N. Pinardi and J. Woods, Eds., Springer-Verlag, 131–148.
Navarra, A., et al., 2008: Atmospheric horizontal resolution affects tropical climate variability
in coupled models. JCLI, 21, 730–750.
Palmer, T., 2006: Predictability of weather and climate: from theory to practice. Predictability
of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University
Press, 1–29.
Palmer, T., et al., 2004: Development of a european multi-model ensemble system for seasonal
to inter-annual prediction (demeter). BAMS, 85, 853–872.
Di Pietro, P. and S. Masina, 2009: The cmcc-ingv global ocean data assimilation system
(cigodas). Technical Report rp0071, Centro euro-Mediterraneo per i Cambiamenti Climatici,
39 pp.
Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J.
Ansell, and S. F. B. Tett, 2005: Improved analyses of changes and uncertainties in sea
surface temperature measured in situ since the mid-nineteenth century: The hadisst2
dataset. J. Climate, 19, 446–469.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell,
E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice
and night marine air temperature since the late nineteenth century. J. Geophys. Res., 18,
doi:10.1029/2002JD002670.
Reynolds, R. W. and T. M. Smith, 1994: Improved global sea surface temperature analyses
using optimum interpolation. J. Climate, 7, 929–948.
Richardson, D., 2006: Predictability and economic value. Predictability of Weather and
Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 628–644.
Roeckner, E., K. Arpe, L. Bengtsson, M. Cristoph, M. Claussen, and co authors, 1996:
The atmospheric general circulation model echam-4: model description and simulation of
present-day climate. Technical Report 218, Max-Planck-Institut f¨ur Meteorologie, 94 pp.
Rosati, A., R. Gudgel, and K. Miyakoda, 1997: The impact of ocean initial conditions on
enso forecasting with a coupled model. Mon. Wea. Rev., 5, 754–772.
Schneider, E., D. DeWitt, A. Rosati, B. Kirtman, L. Ji, and co authors, 2003: Retrospective
enso forecasts: sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev.,
131, 3038–3060.
Shukla, J. and J. C. Kinter, 2006: Predictability of seasonal climate variations: a pedagogical
review. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds.,
Cambridge University Press, 306–341.
Shukla, J. and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to
equatorial pacific sea surface temperature anomalies. J. Atmos. Sci., 40, 1613–1630.
Trenberth, K. E., G.W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998:
Progress during toga in understanding and modeling global teleconnections associated with
tropical sea surface temperatures. J. Geophys. Res., 103, 14 291–14 324.
Tribbia, J. and A. Troccoli, 2008: Getting the coupled model ready at the starting blocks.
Seasonal Climate: Forecasting and Managing Risk, DLT and M. SJ, Eds., NATO Science
Series, Springer Academic Publishers, 91–126.
Uppala, S. and co authors, 2005: The era-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131,
2961–3012.
Valcke, S., L. Terray, and A. Piacentini, 2000: The oasis coupler user guide version 2.4.
Technical Report TR/CMGC/00-10, CERFACS, 85 pp.
Vidard, A., D. Anderson, and M. Balmaseda, 2006: Impact of ocean observation systems
on ocean analysis and seasonal forecasts. Mon. Wea. Rev., 135, 409–429, doi:10.1175/
MWR3310.1.
Vitart, F., M. Balmaseda, L. Ferranti, and D. Anderson, 2003: Westerly wind events and the
1997/98 el ni˜no event in the ecmwf seasonal forecasting system: A case study. J. Climate,
16, 3153–3170.
Vitart, F., S. Woolnough, M. Balmaseda, and A. Tompkins, 2007: Monthly forecast of the
madden-julian oscillation using a coupled gcm. Mon. Wea. Rev., 135, 2700–2715.
Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, W. E. Kousky, N. S. Sarachik, and H. von
Storch, 1998: On the structure and evolution of enso-related climate variability in the
tropical pacific: Lessons from toga. J. Geophys. Res., 103, 14 241–14 259.
Wang, G., R. Kleeman, N. Smith, and F. Tseitkin, 2002: The bmrc coupled general circulation
model enso forecast system. Mon. Wea. Rev., 130, 975–991.
Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences Second Edition. Academic
Press, 630 pp.
Xie, P. and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge
observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc.,
78, 2539–2558.
Zebiak, S. and M. Cane, 1987: A model of the el ni˜no-southern oscillation. Mon. Wea. Rev.,
155, 2262–2278.
anomalies: Possible contributions to seasonal rainfall predictability over land areas.
GRL, 35, L02 718, doi:10.1029/2007GL032415.
Alves, O., M. Balmaseda, D. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical
seasonal forecasts to ocean initial conditions. QJRMS, 130, 647–667.
Balmaseda, M., D. Anderson, and A. Vidard, 2007: Impact of argo on analyses of the global
ocean. GRL, 34, L16 605, doi:10.1029/2007GL0304452.
Bellucci, A., S. Masina, P. D. Pietro, and A. Navarra, 2007: Using temperature-salinity
relations in a global ocean implementation of a multivariate data assimilation scheme.
MWR, 135, 3785–3807.
Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala,
2009: The era-interim archive. Technical report ERA Report Series No.1, ECMWF, 16
pp.
Cane, M., S. Zebiak, and S. Dolan, 1986: Experimental forecasts of el ni˜no. NAT, 321,
827–832.
Chen, D., S. Zebiak, and A. Busalacchi, 1995: An improved procedure for el ni˜no forecasting:
Implications for predictability. SCI, 269, 1699–1702.
Ferranti, L. and P. Viterbo, 2003: The european summer of 2003: Sensitivity to soil water
initial conditions. JCLI, 19, 3659–3680.
Gualdi, S., A. Alessandri, and A. Navarra, 2004: Impact of atmospheric horizontal resolution
on el ni˜no southern oscillation forecasts. TELLUS, 57, 357–374.
Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003a: The interannual
variability in the tropical indian ocean as simulated by a cgcm. CDYN, 20, 567–582.
Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003b: Assessment of the tropical
indo-pacific climate in the sintex cgcm. Ann. Geophys., 46, 1–26.
Ingleby, B. and M. Huddleston, 2007: Quality control of ocean profiles: historical and realtime
data. JMS, 65, 158–175.
Ji, M. and A. Leetmaa, 1995: Impact of data assimilation on ocean initialization and el ni˜no
prediction. MWR, 125, 742–753.
Jin, E. and J. Kinter, 2008: Characteristics of tropical pacific sst predictability in coupled
gcm forecasts using the ncep cfs. CDYN, 32, 675–691, doi:10.1007/s00382-008-0418-2.
Kim, H., I. Kang, B. Wang, and J. Lee, 2007: Interannual variations of the boreal summer
intraseasonal variability predicted by ten atmosphere. CDYN, 30, 485–496, doi:10.1007/
s00382-007-0292-3.
Kirtman, B. P. and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy
for cgcms. GRL, 29, 17–20, doi:10.1029/2002GL014834.
Koster, R. D. and coauthors, 2004: Regions of strong coupling between soil moisture and
precipitation. SCI, 305, 1138–1140.
Koster, R. D. and coauthors, 2006: Glace: The global land-atmosphere coupling experiment.
part i: Overview. JHM, 7, 590–610.
Latif, M., et al., 1998: A review of the predictability and prediction of enso. JMS, 103,
14 375–14 393.
Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: A review of the
predictability and prediction of enso. JCLI, 18, 2344–2360.
McPhaden, M. J., 1999: Genesys and evolution of the 1997-98 el ni˜no. SCI, 283, 950–954.
McPhaden, M. J., et al., 1998: The tropical ocean-global atmosphere observing system: A
decade of progress. JGR, 103, 14 169–14 240.
Navarra, A., 2002: Ensembles, forecasts and predictability. Ocean forecasting: conceptual
basis and applications, N. Pinardi and J. Woods, Eds., Springer-Verlag, 131–148.
Navarra, A., et al., 2008: Atmospheric horizontal resolution affects tropical climate variability
in coupled models. JCLI, 21, 730–750.
Palmer, T., 2006: Predictability of weather and climate: from theory to practice. Predictability
of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University
Press, 1–29.
Palmer, T., et al., 2004: Development of a european multi-model ensemble system for seasonal
to inter-annual prediction (demeter). BAMS, 85, 853–872.
Di Pietro, P. and S. Masina, 2009: The cmcc-ingv global ocean data assimilation system
(cigodas). Technical Report rp0071, Centro euro-Mediterraneo per i Cambiamenti Climatici,
39 pp.
Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J.
Ansell, and S. F. B. Tett, 2005: Improved analyses of changes and uncertainties in sea
surface temperature measured in situ since the mid-nineteenth century: The hadisst2
dataset. J. Climate, 19, 446–469.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell,
E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice
and night marine air temperature since the late nineteenth century. J. Geophys. Res., 18,
doi:10.1029/2002JD002670.
Reynolds, R. W. and T. M. Smith, 1994: Improved global sea surface temperature analyses
using optimum interpolation. J. Climate, 7, 929–948.
Richardson, D., 2006: Predictability and economic value. Predictability of Weather and
Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 628–644.
Roeckner, E., K. Arpe, L. Bengtsson, M. Cristoph, M. Claussen, and co authors, 1996:
The atmospheric general circulation model echam-4: model description and simulation of
present-day climate. Technical Report 218, Max-Planck-Institut f¨ur Meteorologie, 94 pp.
Rosati, A., R. Gudgel, and K. Miyakoda, 1997: The impact of ocean initial conditions on
enso forecasting with a coupled model. Mon. Wea. Rev., 5, 754–772.
Schneider, E., D. DeWitt, A. Rosati, B. Kirtman, L. Ji, and co authors, 2003: Retrospective
enso forecasts: sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev.,
131, 3038–3060.
Shukla, J. and J. C. Kinter, 2006: Predictability of seasonal climate variations: a pedagogical
review. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds.,
Cambridge University Press, 306–341.
Shukla, J. and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to
equatorial pacific sea surface temperature anomalies. J. Atmos. Sci., 40, 1613–1630.
Trenberth, K. E., G.W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998:
Progress during toga in understanding and modeling global teleconnections associated with
tropical sea surface temperatures. J. Geophys. Res., 103, 14 291–14 324.
Tribbia, J. and A. Troccoli, 2008: Getting the coupled model ready at the starting blocks.
Seasonal Climate: Forecasting and Managing Risk, DLT and M. SJ, Eds., NATO Science
Series, Springer Academic Publishers, 91–126.
Uppala, S. and co authors, 2005: The era-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131,
2961–3012.
Valcke, S., L. Terray, and A. Piacentini, 2000: The oasis coupler user guide version 2.4.
Technical Report TR/CMGC/00-10, CERFACS, 85 pp.
Vidard, A., D. Anderson, and M. Balmaseda, 2006: Impact of ocean observation systems
on ocean analysis and seasonal forecasts. Mon. Wea. Rev., 135, 409–429, doi:10.1175/
MWR3310.1.
Vitart, F., M. Balmaseda, L. Ferranti, and D. Anderson, 2003: Westerly wind events and the
1997/98 el ni˜no event in the ecmwf seasonal forecasting system: A case study. J. Climate,
16, 3153–3170.
Vitart, F., S. Woolnough, M. Balmaseda, and A. Tompkins, 2007: Monthly forecast of the
madden-julian oscillation using a coupled gcm. Mon. Wea. Rev., 135, 2700–2715.
Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, W. E. Kousky, N. S. Sarachik, and H. von
Storch, 1998: On the structure and evolution of enso-related climate variability in the
tropical pacific: Lessons from toga. J. Geophys. Res., 103, 14 241–14 259.
Wang, G., R. Kleeman, N. Smith, and F. Tseitkin, 2002: The bmrc coupled general circulation
model enso forecast system. Mon. Wea. Rev., 130, 975–991.
Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences Second Edition. Academic
Press, 630 pp.
Xie, P. and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge
observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc.,
78, 2539–2558.
Zebiak, S. and M. Cane, 1987: A model of the el ni˜no-southern oscillation. Mon. Wea. Rev.,
155, 2262–2278.
Type
article
File(s)
Loading...
Name
13495_271109_revised.pdf
Size
6.45 MB
Format
Adobe PDF
Checksum (MD5)
9cc567e4e775339c071d70889290718c
No Thumbnail Available
Name
article.pdf
Size
7.14 MB
Format
Adobe PDF
Checksum (MD5)
526a1a562fe09af33eee6c2c52547f18