The geochemical signature caused by earthquake propagation in carbonate-hosted faults
Author(s)
Language
English
Obiettivo Specifico
2.4. TTC - Laboratori di geochimica dei fluidi
4.5. Studi sul degassamento naturale e sui gas petroliferi
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Issue/vol(year)
/310 (2011)
Publisher
Elsevier
Pages (printed)
225-232
Date Issued
2011
Subjects
Abstract
Friction laboratory experiments have been performed at sub-seismic (≈ 0.01 m/s) to seismic slip rates
(N1 m/s) on dolomite gouges of the Triassic evaporites, which hosted the five mainshocks (5bMw b6) of
the 1997 Colfiorito earthquakes in the Northern Apennines (Italy). Experimental faults are lubricated as
marked falls of the steady state sliding friction coefficients, μss≈0.2, are observed at seismic slip rates, as opposed
to values of μss≥0.6 attained for sub-seismic slip rates. At seismic slip rates decarbonation reactions,
triggered by frictional heating in the experimental slip zone, produced: 1) new fluid (CO2) and mineral
phases (e.g. Mg-calcite, periclase/brucite, lime/portlandite); 2) isotopic fractionation between the reaction
products and the reactant mineral phases. The variations of total dissolved inorganic carbon (TIDC) in concentration
Δ(TDIC) and isotopic composition Δ(δ13CTIDC) in a carbonate aquifer, with geochemical parameters
similar to those of an aquifer located in the seismic belt of the Northern Apennines, have been modelled after
an input of earthquake-produced CO2. Modelling results show that variation in Δ(δ13CTIDC) can be detected in
volumes of groundwater which are about three times larger than those calculated for the variations in
Δ(TDIC). For amounts of CO2 produced by coseismic decarbonation of ≤5 wt.% of the slip zone gouge, modelling
results show that a detectable geochemical anomaly is obtained if the produced CO2 is dissolved into volumes
of water comparable to those of the shallower aquifers feeding the springs in the 1997 Colfiorito
earthquakes area. We conclude that the integration of results from laboratory experiments, performed at
seismic condition, and geochemical analyses can potentially aid in the calibration of monitoring strategies
of geochemical properties of water in seismically active areas and provide insights into seismic fault zone
processes (e.g. constraints on the temperature rise during earthquake propagation).
(N1 m/s) on dolomite gouges of the Triassic evaporites, which hosted the five mainshocks (5bMw b6) of
the 1997 Colfiorito earthquakes in the Northern Apennines (Italy). Experimental faults are lubricated as
marked falls of the steady state sliding friction coefficients, μss≈0.2, are observed at seismic slip rates, as opposed
to values of μss≥0.6 attained for sub-seismic slip rates. At seismic slip rates decarbonation reactions,
triggered by frictional heating in the experimental slip zone, produced: 1) new fluid (CO2) and mineral
phases (e.g. Mg-calcite, periclase/brucite, lime/portlandite); 2) isotopic fractionation between the reaction
products and the reactant mineral phases. The variations of total dissolved inorganic carbon (TIDC) in concentration
Δ(TDIC) and isotopic composition Δ(δ13CTIDC) in a carbonate aquifer, with geochemical parameters
similar to those of an aquifer located in the seismic belt of the Northern Apennines, have been modelled after
an input of earthquake-produced CO2. Modelling results show that variation in Δ(δ13CTIDC) can be detected in
volumes of groundwater which are about three times larger than those calculated for the variations in
Δ(TDIC). For amounts of CO2 produced by coseismic decarbonation of ≤5 wt.% of the slip zone gouge, modelling
results show that a detectable geochemical anomaly is obtained if the produced CO2 is dissolved into volumes
of water comparable to those of the shallower aquifers feeding the springs in the 1997 Colfiorito
earthquakes area. We conclude that the integration of results from laboratory experiments, performed at
seismic condition, and geochemical analyses can potentially aid in the calibration of monitoring strategies
of geochemical properties of water in seismically active areas and provide insights into seismic fault zone
processes (e.g. constraints on the temperature rise during earthquake propagation).
References
Boni, C., Petitta, M., 2008. Redazione informatizzata della cartografia idrogeologica
tematica del territorio della Regione Umbria. Final Report of “Contratto di ricerca
Regione Umbria - Giunta Regionale Direzione Regionale Ambiente, Territorio e
Infrastrutture Servizi tecnici Regionali-Dipartimento di Scienze della Terra Università
di Roma, La Sapienza", p. 128.
Boni, C., Bono, P., Capelli, G., 1986. Schema idrogeologico dell'Italia centrale. Mem. Soc.
Geol. It. 35, 991–1012.
Bottinga, Y., 1968. Calculation of fractionation factors for carbon and oxygen isotopic
exchange in system calcite-carbon dioxide-water. J. Phys. Chem. Us 72, 800.
Boullier, A.M., Fujimoto, K.,Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P., Ildefonse,
B., 2004. Textural evidence for recent co-seismic circulation of fluids in the Nojima fault
zone, Awaji island, Japan. Tectonophysics 378, 165–181.Chiaraluce, L., Barchi,M., Collettini, C., Mirabella, F., Pucci, S., 2005. Connecting seismically
active normal faults with Quaternary geological structures in a complex extensional
environment: the Colfiorito 1997 case history (northern Apennines, Italy). Tectonics
24, TC1002. doi:10.1029/2004TC001627.
Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon
dioxide Earth degassing estimated from carbon balance of regional aquifers: the
case of central Apennine, Italy. J. Geophys. Res. Earth Surf. 105, 8423–8434.
Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004.
Carbon dioxide Earth degassing and seismogenesis in central and southern Italy.
Geophys. Res. Lett. 31, L07615. doi:10.1029/2004GL019480.
Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011.
Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral
area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304, 389–398.
Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry and mechanics
of the Umbria-Marche earthquakes (Central Italy) from the integration of field and
laboratory data. Tectonophysics 476, 99–109.
De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone architecture and
deformation processes within evaporitic rocks in the upper crust. Tectonics 27,
TC4017. doi:10.1029/2007TC002230.
De Paola, N.,Hirose, T., Mitchell, T., Di Toro,G., Viti, C., Shimamoto, T., 2011. Fault lubrication
and earthquake propagation in thermally unstable rocks. Geology 39, 35–38.
Dresen, G., 1991. Stress-distribution and the orientation of Riedel shears. Tectonophysics
188 (3–4), 239–247.
Famin, V., Nakashima, S., Boullier, A.M., Fujimoto, K., Hirono, T., 2008. Earthquakes produce
carbon dioxide in crustal faults. Earth Planet. Sci. Lett. 265, 487–497.
Gu, Y.J., Wong, T.F., 1994. Development of shear localization in simulated quartz gouge—effect
of cumulative slip and gouge particle-size. Pure Appl. Geophys. 143 (1–3), 387–423.
Han, R., Shimamoto, T., Hirose, T., Ree, J.H., Ando, J., 2007. Ultralow friction of carbonate
faults caused by thermal decomposition. Science 316, 878–881.
Hirono, T., Yokoyama, T., Hamada, Y., Tanikawa, W., Mishima, T., Ikehara, M., Famin,
V., Tanimizu, M., Lin,W., Soh,W., Song, S.R., 2007. A chemical kinetic approach
to estimate dynamic shear stress during the 1999 Taiwan Chi-Chi earthquake.
Geophys. Res. Lett. 34, L16303. doi:10.1029/2008GL034476.
Hirose, T., Shimamoto, T., 2005. Slip-weakening distance of faults during frictional
melting as inferred from experimental and natural pseudotachylytes. Bull. Seismol.
Soc. Am. 95, 1666–1673.
Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi,M., Hirono, T., Mishima,
T., Tanikawa,W., Lin,W.,Kikuta, H., Soh,W., Song, S.R., 2008. Coseismic fluid-rock
interactions at high temperatures in the Chelungpu fault. Nat. Geosci. 1, 679–683.
Logan, J., Dengo, C., Higgs, N., Wang, Z., 1992. Fabrics of experimental fault zones: their
development and relationship to mechanical behaviour. In: Evans, B., Wong, T.-F.
(Eds.), Fault Mechanics and Transport Properties of Rocks. : International Geophysics
Series, vol. 51. Academic Press Ltd., London, pp. 33–67.
Mastrolillo, L., Baldoni, T., Banzato, F., Boscherini, A., Cascone, D., Checcucci, R., Petitta,
M., Boni, C., 2009. Quantitative hydrogeological analysis of the carbonate domain
of the Umbria region (Central Italy). Ital. J. Eng. Geol. Environ. 1, 137–155.
Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004. Aftershocks
driven by a high-pressure CO2 source at depth. Nature 427, 724–728.
Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008. Insights on the seismogenic
layer thickness from the upper crust structure of the Umbria-Marche Apennines
(central Italy). Tectonics 27, TC1010. doi:10.1029/2007TC002134.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic
faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake.
Geophys. Res. Lett. 34, L01308. doi:10.1029/2006GL027931.
Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)—a computer
program for speciation, batch-reaction, one-dimensional transport, and inverse
geochemical calculations. U.S. Geological Survey Water-Resources Investigations
Report, pp. 99–4259 (312 pp.).
Pili, E., Poitrasson, F., Gratier, J.P., 2002. Carbon-oxygen isotope and trace element
constraints on how fluids percolate faulted limestones from the San Andreas
Fault system: partitioning of fluid sources and pathways. Chem. Geol. 190,
231–250.
Rice, J.R., 2006. Heating and weakening of faults during earthquake slip. J. Geophys.
Res. Earth Surf. 111, B05311. doi:10.1029/2005JB004006.
Sato, T., Sakai, R., Furuya, K., Kodama, T., 2000. Coseismic spring flow changes associated
with the 1995 Kobe earthquake. Geophys Res Lett 27, 1219–1222.
Sato, K., Kumagai, H., Hirose, T., Tamura, H.,Mizoguchi, K., Shimamoto, T., 2009. Experimental
study for noble gas release and exchange under high-speed frictional melting. Chem.
Geol. 266, 96–103.
Sheppard, S.M., Schwarcz, H.P., 1970. Fractionation of carbon and oxygen isotopes and
magnesium between coexisting metamorphic calcite and dolomite. Contrib.Mineral.
Petrol. 26, 161.
Sibson, R.H., 2000. Fluid involvement in normal faulting. J. Geodyn. 29, 469–499.
Tinti, E., Spudich, P., Cocco, M., 2005. Earthquake fracture energy inferred from kinematic
rupture models on extended faults. J. Geophys. Res. Earth Surf. 110, B12303.
doi:10.1029/2005JB003644.
Tsunogai, U., Wakita, H., 1995. Precursory chemical-changes in-ground water — Kobe
Earthquake, Japan. Science 269, 61–63.
Wigley, T.M.L., 1979. Correction. Geochim. Cosmochim. Acta 43, 1395.
Wigley, T.M.L., Plummer, L.N., Pearson, F.J., 1978. Mass-transfer and carbon isotope
evolution in natural-water systems. Geochim. Cosmochim. Acta 42, 1117–1139.
tematica del territorio della Regione Umbria. Final Report of “Contratto di ricerca
Regione Umbria - Giunta Regionale Direzione Regionale Ambiente, Territorio e
Infrastrutture Servizi tecnici Regionali-Dipartimento di Scienze della Terra Università
di Roma, La Sapienza", p. 128.
Boni, C., Bono, P., Capelli, G., 1986. Schema idrogeologico dell'Italia centrale. Mem. Soc.
Geol. It. 35, 991–1012.
Bottinga, Y., 1968. Calculation of fractionation factors for carbon and oxygen isotopic
exchange in system calcite-carbon dioxide-water. J. Phys. Chem. Us 72, 800.
Boullier, A.M., Fujimoto, K.,Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P., Ildefonse,
B., 2004. Textural evidence for recent co-seismic circulation of fluids in the Nojima fault
zone, Awaji island, Japan. Tectonophysics 378, 165–181.Chiaraluce, L., Barchi,M., Collettini, C., Mirabella, F., Pucci, S., 2005. Connecting seismically
active normal faults with Quaternary geological structures in a complex extensional
environment: the Colfiorito 1997 case history (northern Apennines, Italy). Tectonics
24, TC1002. doi:10.1029/2004TC001627.
Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon
dioxide Earth degassing estimated from carbon balance of regional aquifers: the
case of central Apennine, Italy. J. Geophys. Res. Earth Surf. 105, 8423–8434.
Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004.
Carbon dioxide Earth degassing and seismogenesis in central and southern Italy.
Geophys. Res. Lett. 31, L07615. doi:10.1029/2004GL019480.
Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011.
Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral
area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304, 389–398.
Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry and mechanics
of the Umbria-Marche earthquakes (Central Italy) from the integration of field and
laboratory data. Tectonophysics 476, 99–109.
De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone architecture and
deformation processes within evaporitic rocks in the upper crust. Tectonics 27,
TC4017. doi:10.1029/2007TC002230.
De Paola, N.,Hirose, T., Mitchell, T., Di Toro,G., Viti, C., Shimamoto, T., 2011. Fault lubrication
and earthquake propagation in thermally unstable rocks. Geology 39, 35–38.
Dresen, G., 1991. Stress-distribution and the orientation of Riedel shears. Tectonophysics
188 (3–4), 239–247.
Famin, V., Nakashima, S., Boullier, A.M., Fujimoto, K., Hirono, T., 2008. Earthquakes produce
carbon dioxide in crustal faults. Earth Planet. Sci. Lett. 265, 487–497.
Gu, Y.J., Wong, T.F., 1994. Development of shear localization in simulated quartz gouge—effect
of cumulative slip and gouge particle-size. Pure Appl. Geophys. 143 (1–3), 387–423.
Han, R., Shimamoto, T., Hirose, T., Ree, J.H., Ando, J., 2007. Ultralow friction of carbonate
faults caused by thermal decomposition. Science 316, 878–881.
Hirono, T., Yokoyama, T., Hamada, Y., Tanikawa, W., Mishima, T., Ikehara, M., Famin,
V., Tanimizu, M., Lin,W., Soh,W., Song, S.R., 2007. A chemical kinetic approach
to estimate dynamic shear stress during the 1999 Taiwan Chi-Chi earthquake.
Geophys. Res. Lett. 34, L16303. doi:10.1029/2008GL034476.
Hirose, T., Shimamoto, T., 2005. Slip-weakening distance of faults during frictional
melting as inferred from experimental and natural pseudotachylytes. Bull. Seismol.
Soc. Am. 95, 1666–1673.
Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi,M., Hirono, T., Mishima,
T., Tanikawa,W., Lin,W.,Kikuta, H., Soh,W., Song, S.R., 2008. Coseismic fluid-rock
interactions at high temperatures in the Chelungpu fault. Nat. Geosci. 1, 679–683.
Logan, J., Dengo, C., Higgs, N., Wang, Z., 1992. Fabrics of experimental fault zones: their
development and relationship to mechanical behaviour. In: Evans, B., Wong, T.-F.
(Eds.), Fault Mechanics and Transport Properties of Rocks. : International Geophysics
Series, vol. 51. Academic Press Ltd., London, pp. 33–67.
Mastrolillo, L., Baldoni, T., Banzato, F., Boscherini, A., Cascone, D., Checcucci, R., Petitta,
M., Boni, C., 2009. Quantitative hydrogeological analysis of the carbonate domain
of the Umbria region (Central Italy). Ital. J. Eng. Geol. Environ. 1, 137–155.
Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004. Aftershocks
driven by a high-pressure CO2 source at depth. Nature 427, 724–728.
Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008. Insights on the seismogenic
layer thickness from the upper crust structure of the Umbria-Marche Apennines
(central Italy). Tectonics 27, TC1010. doi:10.1029/2007TC002134.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic
faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake.
Geophys. Res. Lett. 34, L01308. doi:10.1029/2006GL027931.
Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)—a computer
program for speciation, batch-reaction, one-dimensional transport, and inverse
geochemical calculations. U.S. Geological Survey Water-Resources Investigations
Report, pp. 99–4259 (312 pp.).
Pili, E., Poitrasson, F., Gratier, J.P., 2002. Carbon-oxygen isotope and trace element
constraints on how fluids percolate faulted limestones from the San Andreas
Fault system: partitioning of fluid sources and pathways. Chem. Geol. 190,
231–250.
Rice, J.R., 2006. Heating and weakening of faults during earthquake slip. J. Geophys.
Res. Earth Surf. 111, B05311. doi:10.1029/2005JB004006.
Sato, T., Sakai, R., Furuya, K., Kodama, T., 2000. Coseismic spring flow changes associated
with the 1995 Kobe earthquake. Geophys Res Lett 27, 1219–1222.
Sato, K., Kumagai, H., Hirose, T., Tamura, H.,Mizoguchi, K., Shimamoto, T., 2009. Experimental
study for noble gas release and exchange under high-speed frictional melting. Chem.
Geol. 266, 96–103.
Sheppard, S.M., Schwarcz, H.P., 1970. Fractionation of carbon and oxygen isotopes and
magnesium between coexisting metamorphic calcite and dolomite. Contrib.Mineral.
Petrol. 26, 161.
Sibson, R.H., 2000. Fluid involvement in normal faulting. J. Geodyn. 29, 469–499.
Tinti, E., Spudich, P., Cocco, M., 2005. Earthquake fracture energy inferred from kinematic
rupture models on extended faults. J. Geophys. Res. Earth Surf. 110, B12303.
doi:10.1029/2005JB003644.
Tsunogai, U., Wakita, H., 1995. Precursory chemical-changes in-ground water — Kobe
Earthquake, Japan. Science 269, 61–63.
Wigley, T.M.L., 1979. Correction. Geochim. Cosmochim. Acta 43, 1395.
Wigley, T.M.L., Plummer, L.N., Pearson, F.J., 1978. Mass-transfer and carbon isotope
evolution in natural-water systems. Geochim. Cosmochim. Acta 42, 1117–1139.
Type
article
File(s)![Thumbnail Image]()
Loading...
Name
De Paola et al_EPSL 2011.pdf
Size
1.12 MB
Format
Adobe PDF
Checksum (MD5)
cce3decd802563756209baa378b2ea34