Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. The geochemical signature caused by earthquake propagation in carbonate-hosted faults
 
  • Details

The geochemical signature caused by earthquake propagation in carbonate-hosted faults

Author(s)
De Paola, N.  
Rock Mechanics Laboratory, Earth Sciences Department, University of Durham, South Road, DH1 3LE Durham, UK  
Chiodini, G.  
Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia  
Hirose, T.  
Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan  
Cardellini, C.  
Dipartimento di Scienze della Terra, Università di Perugia, Piazza Università, 06123 Perugia, Italy  
Caliro, S.  
Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia  
Shimamoto, T.  
Institute of Geology, China Earthquake Administration, Beijing, China  
Language
English
Obiettivo Specifico
2.4. TTC - Laboratori di geochimica dei fluidi
4.5. Studi sul degassamento naturale e sui gas petroliferi
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Earth and Planetary Science Letters  
Issue/vol(year)
/310 (2011)
Publisher
Elsevier
Pages (printed)
225-232
Date Issued
2011
DOI
10.1016/j.epsl.2011.09.001
URI
https://www.earth-prints.org/handle/2122/7237
Subjects
04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  
04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques  
Subjects

earthquakes

friction

isotopes

Abstract
Friction laboratory experiments have been performed at sub-seismic (≈ 0.01 m/s) to seismic slip rates
(N1 m/s) on dolomite gouges of the Triassic evaporites, which hosted the five mainshocks (5bMw b6) of
the 1997 Colfiorito earthquakes in the Northern Apennines (Italy). Experimental faults are lubricated as
marked falls of the steady state sliding friction coefficients, μss≈0.2, are observed at seismic slip rates, as opposed
to values of μss≥0.6 attained for sub-seismic slip rates. At seismic slip rates decarbonation reactions,
triggered by frictional heating in the experimental slip zone, produced: 1) new fluid (CO2) and mineral
phases (e.g. Mg-calcite, periclase/brucite, lime/portlandite); 2) isotopic fractionation between the reaction
products and the reactant mineral phases. The variations of total dissolved inorganic carbon (TIDC) in concentration
Δ(TDIC) and isotopic composition Δ(δ13CTIDC) in a carbonate aquifer, with geochemical parameters
similar to those of an aquifer located in the seismic belt of the Northern Apennines, have been modelled after
an input of earthquake-produced CO2. Modelling results show that variation in Δ(δ13CTIDC) can be detected in
volumes of groundwater which are about three times larger than those calculated for the variations in
Δ(TDIC). For amounts of CO2 produced by coseismic decarbonation of ≤5 wt.% of the slip zone gouge, modelling
results show that a detectable geochemical anomaly is obtained if the produced CO2 is dissolved into volumes
of water comparable to those of the shallower aquifers feeding the springs in the 1997 Colfiorito
earthquakes area. We conclude that the integration of results from laboratory experiments, performed at
seismic condition, and geochemical analyses can potentially aid in the calibration of monitoring strategies
of geochemical properties of water in seismically active areas and provide insights into seismic fault zone
processes (e.g. constraints on the temperature rise during earthquake propagation).
References
Boni, C., Petitta, M., 2008. Redazione informatizzata della cartografia idrogeologica
tematica del territorio della Regione Umbria. Final Report of “Contratto di ricerca
Regione Umbria - Giunta Regionale Direzione Regionale Ambiente, Territorio e
Infrastrutture Servizi tecnici Regionali-Dipartimento di Scienze della Terra Università
di Roma, La Sapienza", p. 128.
Boni, C., Bono, P., Capelli, G., 1986. Schema idrogeologico dell'Italia centrale. Mem. Soc.
Geol. It. 35, 991–1012.
Bottinga, Y., 1968. Calculation of fractionation factors for carbon and oxygen isotopic
exchange in system calcite-carbon dioxide-water. J. Phys. Chem. Us 72, 800.
Boullier, A.M., Fujimoto, K.,Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P., Ildefonse,
B., 2004. Textural evidence for recent co-seismic circulation of fluids in the Nojima fault
zone, Awaji island, Japan. Tectonophysics 378, 165–181.Chiaraluce, L., Barchi,M., Collettini, C., Mirabella, F., Pucci, S., 2005. Connecting seismically
active normal faults with Quaternary geological structures in a complex extensional
environment: the Colfiorito 1997 case history (northern Apennines, Italy). Tectonics
24, TC1002. doi:10.1029/2004TC001627.
Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon
dioxide Earth degassing estimated from carbon balance of regional aquifers: the
case of central Apennine, Italy. J. Geophys. Res. Earth Surf. 105, 8423–8434.
Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004.
Carbon dioxide Earth degassing and seismogenesis in central and southern Italy.
Geophys. Res. Lett. 31, L07615. doi:10.1029/2004GL019480.
Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011.
Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral
area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304, 389–398.
Collettini, C., De Paola, N., Faulkner, D.R., 2009. Insights on the geometry and mechanics
of the Umbria-Marche earthquakes (Central Italy) from the integration of field and
laboratory data. Tectonophysics 476, 99–109.
De Paola, N., Collettini, C., Faulkner, D.R., Trippetta, F., 2008. Fault zone architecture and
deformation processes within evaporitic rocks in the upper crust. Tectonics 27,
TC4017. doi:10.1029/2007TC002230.
De Paola, N.,Hirose, T., Mitchell, T., Di Toro,G., Viti, C., Shimamoto, T., 2011. Fault lubrication
and earthquake propagation in thermally unstable rocks. Geology 39, 35–38.
Dresen, G., 1991. Stress-distribution and the orientation of Riedel shears. Tectonophysics
188 (3–4), 239–247.
Famin, V., Nakashima, S., Boullier, A.M., Fujimoto, K., Hirono, T., 2008. Earthquakes produce
carbon dioxide in crustal faults. Earth Planet. Sci. Lett. 265, 487–497.
Gu, Y.J., Wong, T.F., 1994. Development of shear localization in simulated quartz gouge—effect
of cumulative slip and gouge particle-size. Pure Appl. Geophys. 143 (1–3), 387–423.
Han, R., Shimamoto, T., Hirose, T., Ree, J.H., Ando, J., 2007. Ultralow friction of carbonate
faults caused by thermal decomposition. Science 316, 878–881.
Hirono, T., Yokoyama, T., Hamada, Y., Tanikawa, W., Mishima, T., Ikehara, M., Famin,
V., Tanimizu, M., Lin,W., Soh,W., Song, S.R., 2007. A chemical kinetic approach
to estimate dynamic shear stress during the 1999 Taiwan Chi-Chi earthquake.
Geophys. Res. Lett. 34, L16303. doi:10.1029/2008GL034476.
Hirose, T., Shimamoto, T., 2005. Slip-weakening distance of faults during frictional
melting as inferred from experimental and natural pseudotachylytes. Bull. Seismol.
Soc. Am. 95, 1666–1673.
Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi,M., Hirono, T., Mishima,
T., Tanikawa,W., Lin,W.,Kikuta, H., Soh,W., Song, S.R., 2008. Coseismic fluid-rock
interactions at high temperatures in the Chelungpu fault. Nat. Geosci. 1, 679–683.
Logan, J., Dengo, C., Higgs, N., Wang, Z., 1992. Fabrics of experimental fault zones: their
development and relationship to mechanical behaviour. In: Evans, B., Wong, T.-F.
(Eds.), Fault Mechanics and Transport Properties of Rocks. : International Geophysics
Series, vol. 51. Academic Press Ltd., London, pp. 33–67.
Mastrolillo, L., Baldoni, T., Banzato, F., Boscherini, A., Cascone, D., Checcucci, R., Petitta,
M., Boni, C., 2009. Quantitative hydrogeological analysis of the carbonate domain
of the Umbria region (Central Italy). Ital. J. Eng. Geol. Environ. 1, 137–155.
Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004. Aftershocks
driven by a high-pressure CO2 source at depth. Nature 427, 724–728.
Mirabella, F., Barchi, M., Lupattelli, A., Stucchi, E., Ciaccio, M.G., 2008. Insights on the seismogenic
layer thickness from the upper crust structure of the Umbria-Marche Apennines
(central Italy). Tectonics 27, TC1010. doi:10.1029/2007TC002134.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic
faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake.
Geophys. Res. Lett. 34, L01308. doi:10.1029/2006GL027931.
Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)—a computer
program for speciation, batch-reaction, one-dimensional transport, and inverse
geochemical calculations. U.S. Geological Survey Water-Resources Investigations
Report, pp. 99–4259 (312 pp.).
Pili, E., Poitrasson, F., Gratier, J.P., 2002. Carbon-oxygen isotope and trace element
constraints on how fluids percolate faulted limestones from the San Andreas
Fault system: partitioning of fluid sources and pathways. Chem. Geol. 190,
231–250.
Rice, J.R., 2006. Heating and weakening of faults during earthquake slip. J. Geophys.
Res. Earth Surf. 111, B05311. doi:10.1029/2005JB004006.
Sato, T., Sakai, R., Furuya, K., Kodama, T., 2000. Coseismic spring flow changes associated
with the 1995 Kobe earthquake. Geophys Res Lett 27, 1219–1222.
Sato, K., Kumagai, H., Hirose, T., Tamura, H.,Mizoguchi, K., Shimamoto, T., 2009. Experimental
study for noble gas release and exchange under high-speed frictional melting. Chem.
Geol. 266, 96–103.
Sheppard, S.M., Schwarcz, H.P., 1970. Fractionation of carbon and oxygen isotopes and
magnesium between coexisting metamorphic calcite and dolomite. Contrib.Mineral.
Petrol. 26, 161.
Sibson, R.H., 2000. Fluid involvement in normal faulting. J. Geodyn. 29, 469–499.
Tinti, E., Spudich, P., Cocco, M., 2005. Earthquake fracture energy inferred from kinematic
rupture models on extended faults. J. Geophys. Res. Earth Surf. 110, B12303.
doi:10.1029/2005JB003644.
Tsunogai, U., Wakita, H., 1995. Precursory chemical-changes in-ground water — Kobe
Earthquake, Japan. Science 269, 61–63.
Wigley, T.M.L., 1979. Correction. Geochim. Cosmochim. Acta 43, 1395.
Wigley, T.M.L., Plummer, L.N., Pearson, F.J., 1978. Mass-transfer and carbon isotope
evolution in natural-water systems. Geochim. Cosmochim. Acta 42, 1117–1139.
Type
article
File(s)
Loading...
Thumbnail Image
Name

De Paola et al_EPSL 2011.pdf

Size

1.12 MB

Format

Adobe PDF

Checksum (MD5)

cce3decd802563756209baa378b2ea34

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback