Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. Short-term detection of volcanic unrest at Mt. Etna by means of a multi-station warning system
 
  • Details

Short-term detection of volcanic unrest at Mt. Etna by means of a multi-station warning system

Author(s)
Spampinato, Salvatore  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Langer, Horst  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Messina, Alfio  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia  
Falsaperla, Susanna  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Language
English
Obiettivo Specifico
4V. Processi pre-eruttivi
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Scientific reports  
Issue/vol(year)
/9 (2019)
Electronic ISSN
2045-2322
Pages (printed)
id 6506
Date Issued
April 24, 2019
DOI
10.1038/s41598-019-42930-3
URI
https://www.earth-prints.org/handle/2122/12914
Subjects
04.06. Seismology
04.08. Volcanology  
05.01. Computational geophysics  
Subjects

Etna, Volcanic tremor...

Volcano Monitoring, P...

Self organizing map, ...

Abstract
Early-warning assessment of a volcanic unrest requires that accurate information from monitoring is continuously gathered before volcanic activity starts. Seismic data are an optimal source of such information, overcoming safety problems due to dangerous conditions for field surveys or cloud cover that may hinder visibility. We designed a multi-station warning system based on the classification of patterns of the background seismic radiation, so-called volcanic tremor, by using Self-Organizing Maps (SOM) and fuzzy clustering. The classifier automatically detects patterns that are typical footprints of volcanic unrest. The issuance of the SOM colors on DEM allows their geographical visualization according to the stations of detection; this spatial location makes it possible to infer areas potentially impacted by eruptive phenomena. Tested at Mt. Etna (Italy), the classifier forecasted in hindsight patterns associated with fast-rising magma (typical of lava fountains) as well as a relatively long lead time of the outburst (lava flows from eruptive fractures). Receiver Operating Characteristics (ROC) curves gave an Area Under the Curve (AUC) ∼0.8 indicative of a good detection accuracy that cannot be achieved from a mere random choice.
Sponsors
This work was supported by the MED-SUV project, which has received funding from the European Union’s
Seventh Program for research, technological development and demonstration under grant agreement No
308665.
References
1. UN. A/RES/44/236, http://www.un.org/documents/ga/res/44/a44r236.htm (1989).
2. Lay, T. et al. The Great Sumatra-Andaman Earthquake of 26 December 2004. Science 308(5725), 1127–1133, https://doi.org/10.1126/science.1112250 (2005).
3. Kagan, Y. Y. & Jackson, D. Tohoku Earthquake: A Surprise? Bull. Seis. Soc. Am. 103(2B), https://doi.org/10.1785/0120120110 (2011).
4. UN/ISDR, https://www.unisdr.org/2006/ppew/whats-ew/basics-ew.htm (2006).
5. WOVO (Word Organization of Volcanic Observatories). http://www.wovo.org/observatories (2018).
6. Unglert, K., Radic, V. & Jellinek, A. M. Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra. J. Volcanol. Geotherm. Res. 320, 58–74, https://doi.org/10.1016/j. jvolgeores.2016.04.014 (2016).
7. Hammer, C., Beyreuther, M. & Ohrnberger, M. A Seismic-Event Spotting System for Volcano Fast-Response Systems. Bull. Seis. Soc. Am. 102(3), 948–960, https://doi.org/10.1785/0120110167 (2012).
8. Hibert, C. et al. Automatic identifcation of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm. J. Volcanol. Geotherm. Res. 340, 130–142 (2017).
9. Bonaccorso, A., Calvari, S., Del Negro, C. & Falsaperla, S. (Eds). Mt. Etna: Volcano Laboratory, Geophys. Monogr. Ser. 143, 369 pp., AGU, Washington, D. C., https://doi.org/10.1029/GM143 (2004).
10. Patanè, D. et al. Mt Etna volcano: a seismological framework. In: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C. & Falsaperla, S. (Eds) Mt. Etna: Volcano Laboratory. AGU Monograph 143, p. 147–165, https://doi.org/10.1029/GM143 (2004).
11. McNutt, S. R. & Roman, D. C. Volcanic seismicity, in The Encyclopedia of Volcanoes (second edition), edited by H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer, J. Stix, pp. 1011–1034, Academic Press, San Diego, Calif, https://doi.org/10.1016/B978-0-12-385938-9.00059-6 (2015).
12. Branca, S., Coltelli, M., Groppelli, G. & Lentini, F. Geological map of Etna volcano, 1:50,000 scale. It. J. Geosci. 130, 265–291 (2011).
13. Neri, M. et al. The changing face of Mount Etna’s summit area documented with Lidar technology. Geophys. Res. Lett. 35, L09305, https://doi.org/10.1029/2008GL033740 (2008).
14. Andronico, D., Scollo, S. & Cristaldi, A. Unexpected hazards from tephra fallouts at Mt Etna: The 23 November 2013 lava fountain. J. Volcanol. Geotherm. Res. 304, 118–125, https://doi.org/10.1016/j.jvolgeores.2015.08.007 (2015).
15. Falsaperla, S. et al. What happens to in-soil Radon activity during a long-lasting eruption? Insights from Etna by multidisciplinary data analysis. Geochem. Geophys. Geosyst. 18, https://doi.org/10.1002/2017GC006825 (2017).
16. Branca, S., De Beni, E. & Proietti, C. The large and destructive 1669 AD eruption at Etna volcano: reconstruction of the lava fow feld evolution and efusion rate trend. Bull. Volcanol. 75, 694, https://doi.org/10.1007/s00445-013-0694-5 (2013).
17. Branca, S. et al. The 1928 eruption of Mount Etna (Italy): Reconstructing lava fow evolution and the destruction and recovery of the town of Mascali. J. Volcanol. Geotherm. Res, https://doi.org/10.1016/j.jvolgeores.2017.02.002 (2017).
18. Alparone, S., Andronico, D., Lodato, L. & Sgroi, T. Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000. J. Geophys. Res. 108, https://doi.org/10.1029/2002JB001866 (2003).
19. Falsaperla, S. et al. Volcanic tremor at Mt. Etna, Italy, preceding and accompanying the eruption of July–August, 2001. Pure Appl. Geophys. 162(11), 2111–2132 (2005).
20. Langer, H. et al. Detecting imminent eruptive activity at Mt Etna, Italy, in 2007–2008 through pattern classifcation of volcanic tremor data. J. Volcanol. Geotherm. Res. 200, 1–17 (2011).
21. Kohonen, T. Self-organizing Maps, 3rd edition. Springer, Berlin, p 501 (2001).
22. Esposito, A. M. et al. Unsupervised neural analysis of very-long-period events at Stromboli volcano using the Self-Organizing Maps. Bull. Seismol. Soc. Am. 98(5), 2449–2459, https://doi.org/10.1785/0120070110 (2008).
23. Fearnley, C. J. & Beaven, S. Volcano alert level systems: managing the challenges of efective volcanic crisis communication. Bull. Volcanol. 80, 46, https://doi.org/10.1007/s00445-018-1219-z (2018).
24. Metz, C. E. Basic principles of ROC analysis. Sem. Nuc Med. 8, 283–298 (1978).
25. Behncke, B. et al. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 270, 10–21 (2014).
26. Falsaperla, S. et al. Effects of the 1989 fracture system in the dynamics of the upper SE fank of Etna revealed by volcanic tremor data: The missing link? J. Geophys. Res. 115, B11306, https://doi.org/10.1029/2010JB007529 (2010).
27. Falsaperla, S. et al. “Failed” eruptions revealed by pattern classifcation analysis of gas emission and volcanic tremor data at Mt. Etna, Italy. Int. J. Earth Sci. (Geol. Rundsch), https://doi.org/10.1007/s00531-013-0964-7 (2014).
28. Falsaperla, S., Barberi, G. & Cocina, O. The failed eruption of Mt. Etna in December 2005: Evidence from volcanic tremor analyses. Geochem. Geophys. Geosyst. 14, 4989–5005, https://doi.org/10.1002/2013GC004976 (2013).
29. Messina, A. & Langer, H. Pattern recognition of volcanic tremor data on Mt.Etna (Italy) with KKAnalysis—A sofware program for unsupervised classifcation. Computers & Geosciences, https://doi.org/10.1016/j.cageo.2011.03.015 (2011).
30. Zadeh, L. A. Fuzzy sets. Inf. Control. 8, 338–353 (1965).
31. Wigton, R. S., Connor, J. L. & Centor, R. M. Transportability of a decision rule for the diagnosis of streptococcal pharyngitis. Arch. Intern. Med. 146, 81–83 (1986).
32. Favalli, M. et al. The DEM of Mt. Etna: geomorphological and structural implications. Geodinamica Acta 12(5), 279–290, https://doi.org/10.1080/09853111.1999.11105350 (1999).
33. De Beni, E. et al. The continuing story of Etna’s New Southeast Crater (2012–2014): Evolution and volume calculations based on feld surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res. 303, 175–186, https://doi.org/10.1016/j.jvolgeores.2015.07.021 (2015).
34. Corsaro, R. A. & Miraglia, L. The transition from summit to fank activity at Mt. Etna, Sicily (Italy): Inferences from the petrology of products erupted in 2007–2009. J. Volcanol. Geotherm. Res. 275, 51–60, https://doi.org/10.1016/j.jvolgeores.2014.02.009 (2014).
Type
article
File(s)
Loading...
Thumbnail Image
Name

2019_SR_Spampinato_et_al.pdf

Size

2.89 MB

Format

Adobe PDF

Checksum (MD5)

a71b07839dfa665d801dbf12824c351b

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback