Vapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep hydrothermal system and its effects on thermal springs
Author(s)
Language
English
Obiettivo Specifico
2V. Struttura e sistema di alimentazione dei vulcani
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Issue/vol(year)
/346 (2017)
ISSN
0377-0273
Publisher
Elsevier
Pages (printed)
40-53
Date Issued
April 8, 2017
Subjects
Abstract
The Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local hydrothermal system has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the hydrothermal system as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, stillmaintains amoderate alert, as required by the high seismicity and SO2 degassing.
In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at
2600–5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes.
Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated themass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl ~1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin.
The vapour discharged at the steam vent “Nereidas” (3600 m asl) is hypothesized to be separated from a high temperature hydrothermal system. Based on its composition and on literature data on fluid inclusions, we
have retrieved the P-T-X conditions of the deep hydrothermal system, aswell as its pH and fO2. The vapour feeding Nereidas would separate from a biphasic hydrothermal system characterized by the following parameters:
t= 315 °C, P= 15 MPa, NaCl = 10 wt%, CO2=5 wt%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, pH would approach the value of 1.5 while fO2 would correspond to the FeO-Fe2O3 buffer. Chlorine content is estimated at 10,300mg/l. Changes in the magmatic input into the hydrothermal system couldmodify its degree of vapourization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation.
In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at
2600–5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes.
Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated themass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl ~1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin.
The vapour discharged at the steam vent “Nereidas” (3600 m asl) is hypothesized to be separated from a high temperature hydrothermal system. Based on its composition and on literature data on fluid inclusions, we
have retrieved the P-T-X conditions of the deep hydrothermal system, aswell as its pH and fO2. The vapour feeding Nereidas would separate from a biphasic hydrothermal system characterized by the following parameters:
t= 315 °C, P= 15 MPa, NaCl = 10 wt%, CO2=5 wt%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, pH would approach the value of 1.5 while fO2 would correspond to the FeO-Fe2O3 buffer. Chlorine content is estimated at 10,300mg/l. Changes in the magmatic input into the hydrothermal system couldmodify its degree of vapourization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation.
References
Alvaro, H., Nieto, E., Brandsdóttir, B., Muñoz, F., 1990. Seismicity associated with the reactivation
of Nevado del Ruiz, Colombia, July 1985–December 1986. J. Volcanol.
Geotherm. Res. 41 (1), 315–326.
Anderko, A., Pitzer, K.S., 1993. Equation-of-state representation of phase equilibria and
volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim.
Acta 57, 1657–1680.
Arango, E.E., Buitrago, A.J., Cataldi, R., Ferrara, G.C., Panichi, C., Villegas, V.J., 1970. Preliminary
study on the Ruiz Geothermal Project (Colombia). Geothermics 2 (Special
Issue), 43–56.
Badalamenti, B., Chiodini, G., Cioni, R., Favara, R., Francofonte, S., Gurrieri, S., ... Nuccio,
P.M., 1991. Special field workshop at Vulcano (Aeolian Islands) during summer
1988: geochemical results. Acta Vulcanol. 1, 223–227.
Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion
data and for modelling bulk fluid properties. Chem. Geol. 194 (1), 3–23.
Barberi, F., Martini, M., Rosi, M., 1990. Nevado del Ruiz volcano (Colombia): pre-eruption
observations and the November 13, 1985 catastrophic event. J. Volcanol. Geotherm.
Res. 42 (1-2), 1–12.
Bohórquez, O.,Monsalve, M.L., Velandia, F., Gil-Cruz, F.,Mora, H., 2005. Determinación del
Marco Tectónico Regional para la Cadena Volcánicamás Septentrional de la Cordillera
Central de Colombia. Boletín de Geología, UIS 27 (44), 55–79.
Calvache,M.L.V., 1990. Pyroclastic deposits of the November 13, 1985 eruption of Nevado
del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 41 (1), 67–78.
Capasso, G. and Inguaggiato, S., 1998, A simple method for the determination of dissolved
gases in natural waters: an application to thermal waters from Vulcano Island.: Appl.
Geochem., v. 13, p. 631–642.
Craig, H., 1961. Isotopic variations inmeteoric waters, in Science.maggio vol. 133, nº 3465
(26):1702–1703. http://dx.doi.org/10.1126/science.133.3465.1702 PMID 17814749.
Espinosa Baquero, A., 2001. Erupciones históricas de los volcanes colombianos, 1500–
1995. Bogotá, D.C., Colombia : Academia Colombiana de Ciencias Exactas, Físicas y
Naturales. 16.
Federico, C., Capasso, G., Paonita, A., Favara, R., 2010. Effects of steam-heating processes
on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters
of Vulcano Island (Aeolian archipelago). J. Volcanol. Geotherm. Res. 192:178–190.
http://dx.doi.org/10.1016/j.jvolgeores.2010.02.020.
Forero, J., Zuluaga, C., Mojica, J., 2011. Alteration related to hydrothermal activity of the
Nevado del Ruiz volcano (NRV), Colombia. Boletín de Geología 33 (1), 59–67.
Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas
samples. Bull. Volcanol. 39 (1), 132–145.
Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44,
2021–2032.
Giggenbach, W.F., 1984. Mass transfer in hydrothermal alteration systems—a conceptual
approach. Geochimica et Cosmochimica Acta 48 (12), 2693–2711.
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca
geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765.
Giggenbach,W.F., 1990. The chemistry of fumarolic vapor and thermal-spring discharges
from the Nevado del Ruiz volcanic-magmatic-hydrothermal system. Colombia.
J. Volcanol. Geotherm. Res. 42 (1-2), 13–39.
Global Volcanism Program, 2012. Report on Nevado del Ruiz (Colombia). In:
Wunderman, R (Ed.), Bulletin of the Global Volcanism Network. 37:8. Smithsonian
Institution http://dx.doi.org/10.5479/si.GVP.BGVN201208-351020.
Herd, D.G., 1982. Glacial and Volcanic Geology of the Ruiz–Tolima Volcanic Complex, Cordillera
Central, Colombia. No. 8. Instituto Nacional de Investigaciones Geológico-
Mineras.
Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes
of water from the freezing to the critical temperature. Geochim. Cosmochim.
Acta 58, 3425–3437.
Horita, J., Cole, D.R.,Wesolowski, D.J., 1995. The activity-composition relationship of oxygen
and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration
of NaCl solutions to 350 °C. Geochim. Cosmochim. Acta 59 (6), 1139–1151.
HSC Chemistry 6.1®, 2008. Chemical Reaction and Equilibrium Software with Thermochemical
Database and Simulation Module. Outotec Research Oy, Pori.
Inguaggiato, C., Censi, P., Zuddas, P., Londoño, J.M., Chacón, Z., Alzate, D., Brusca, L.,
D'Alessandro, W., 2015. Geochemistry of REE, Zr and Hf in a wide range of pH and
water composition: the Nevado del Ruiz volcano-hydrothermal system (Colombia).
Chem. Geol. 417, 125–133.
Johnson, J., Oelkers, E., Helgeson, H., 1992. SUPCRT92: a software package for calculating
the standard molal thermodynamic properties of minerals, gases, aqueous species
and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947.
Krueger, A.J., Walter, L.S., Schnetzler, C.C., Doiron, S.D., 1990. TOMS measurement of the
sulfur dioxide emitted during the 1985 Nevado del Ruiz eruptions. J. Volcanol.
Geotherm. Res. 41 (1–4), 7–15.
Larson, P.B., Taylor, H.P., 1986. An oxygen isotope study of hydrothermal alteration in the
Lake-City Caldera, San- JuanMountains, Colorado. J. Volcanol. Geotherm. Res. 30, 47–82.
Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., Favara, R., 2010. Hydrothermal
processes governing the geochemistry of the crater fumaroles atMount Etna volcano
(Italy). Chem. Geol. 278 (1), 92–104.
Londoño, J.M., 2010. ASPECTOS RELEVANTES DE LA ACTIVIDAD DEL VOLCÁN NEVADO
DEL RUIZ. 1985–2008. Glaciares, nieves y hielos de América Latina. Cambio climático
y amenazas. Instituto Colombiano de Geología y Minería, p. 261.
Londoño, B.,Makario, J., 2010. Activity and Vp/Vs ratio of volcano-tectonic seismic swarm
zones at Nevado del Ruiz volcano, Colombia. Earth Sciences Research Journal 14 (1),
111–124.
Martinelli, B., 1990. Analysis of seismic patterns observed at Nevado del Ruiz volcano, Colombia
during August–September 1985. J. Volcanol. Geotherm. Res. 41 (1–4), 297–314.
Mejía, E.L., Velandia, F., Zuluaga, C.A., López, J.A., Cramer, T., 2012. ANÁLISIS ESTRUCTURAL
AL NORESTE DEL VOLCÁN NEVADO DEL RUÍZ, COLOMBIA–APORTE A LA
EXPLORACIÓN GEOTÉRMICA. Boletín de Geología 34 (1), 27–41.
Naranjo, J.L., Sigurdsson, H., Carey, S.N., Fritz, W., 1986. Eruption of the Nevado del Ruiz
volcano, Colombia, on 13 November 1985: tephra fall and lahars. Science 233
(4767), 961–963.
Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)–A Computer
Programfor Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical
Calculations: U.S. Geological SurveyWater-Resources Investigations Report
99–4259 (312 p).
Parra, E., Cepeda, H., 1990. Volcanic hazard maps of the Nevado del Ruiz volcano, Colombia.
J. Volcanol. Geotherm. Res. 42 (1–2), 117–127.
Reed, M.H., Spycher, N.F., 1984. Calculation of pH and mineral equilibria in hydrothermal
waters with application to geothermometry and studies of boiling and dilution.
Geochim. Cosmochim. Acta 48, 1479–1492.
Sano, Y., Wakita, H., Williams, S.N., 1990. Helium-isotope systematics at Nevado del Ruiz
volcano, Colombia: implications for the volcanic hydrothermal system. J. Volcanol.
Geotherm. Res. 42 (1), 41–52.
Shock, E.L., Holland, M., Meyer-Dombard, D., Amend, J.P., Osburn, G.R., Fischer, T.P., 2010.
Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems,
Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005–4043.
Sortino, F., Inguaggiato, S., Francofonte, S., 1991. Determination of HF, HCl, and total sulfur
in fumarolic fluids by ion chromatography. Acta Vulcanol. 1, 89–91.
Spycher, N.F., Reed, M.H., 1988. Fugacity coefficients of H2, CO2, CH4, H2O and ofH2O-CO2-
CH4 mixtures: a virial equation treatment for moderate pressures and temperatures
applicable to calculations of hydrothermal boiling. Geochim. Cosmochim. Acta 52,
739–749.
Stix, J., Layne, G.D.,Williams, S.N., 2003. Mechanisms of degassing at Nevado del Ruiz volcano,
Colombia. J. Geol. Soc. 160 (4), 507–521.
52 C. Federico et al. / Journal of Volcanology and Geothermal Research 346 (2017) 40–53
Sturchio, N.C., Williams, S.N., Garcia, N.P., Londono, A.C., 1988. The hydrothermal system
of Nevado del Ruiz volcano, Colombia. Bull. Volcanol. 50, 399–412.
Symonds, R.B., Gerlach, T.M., Reed, M.H., 2001. Magmatic gas scrubbing: implications for
volcano monitoring. J. Volcanol. Geotherm. Res. 108 (1), 303–341.
Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, A., Olaya, J.,
Rivera, C., 2000. Geodynamics of the northern Andes: Subductionsand
intracontinental deformation (Colombia). Tectonics 19, 787–813.
Thouret, J.C., 1990. Effects of the November 13, 1985 eruption on the snow pack and ice
cap of Nevado del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 41 (1–4),
177–201.
Uruena-Suarez, C.L., Zuluaga, C.A., Molano, J.C., 2012. Estudio de inclusiones fluidas en
pozos de gradiente térmico, volcán Nevado del Ruiz. Bol. Geol. 34 (2), 103–115.
Wagner,W., Overhof, U., 2006. Extended IAPWS-IF97 Steamtables, Version 2.0, 2006, CDROM.,
Jewel case. Elsevier 978-3-540-21412-0.
White, A.F., Chuma, N.J., Goff, F., 1992. Mass-transfer constraints on the chemical evolution
of an active hydrothermal system, Valles Caldera, New Mexico. J. Volcanol.
Geotherm. Res. 49, 233–253.
Williams, S.N., Sturchio, N.C., Mendez, R., Londoño, A., García, N., 1990. Sulfur dioxide
from Nevado del Ruiz volcano, Colombia: total flux and isotopic constraints on its origin.
J. Volcanol. Geotherm. Res. 42 (1–2), 53–68.
of Nevado del Ruiz, Colombia, July 1985–December 1986. J. Volcanol.
Geotherm. Res. 41 (1), 315–326.
Anderko, A., Pitzer, K.S., 1993. Equation-of-state representation of phase equilibria and
volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim.
Acta 57, 1657–1680.
Arango, E.E., Buitrago, A.J., Cataldi, R., Ferrara, G.C., Panichi, C., Villegas, V.J., 1970. Preliminary
study on the Ruiz Geothermal Project (Colombia). Geothermics 2 (Special
Issue), 43–56.
Badalamenti, B., Chiodini, G., Cioni, R., Favara, R., Francofonte, S., Gurrieri, S., ... Nuccio,
P.M., 1991. Special field workshop at Vulcano (Aeolian Islands) during summer
1988: geochemical results. Acta Vulcanol. 1, 223–227.
Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion
data and for modelling bulk fluid properties. Chem. Geol. 194 (1), 3–23.
Barberi, F., Martini, M., Rosi, M., 1990. Nevado del Ruiz volcano (Colombia): pre-eruption
observations and the November 13, 1985 catastrophic event. J. Volcanol. Geotherm.
Res. 42 (1-2), 1–12.
Bohórquez, O.,Monsalve, M.L., Velandia, F., Gil-Cruz, F.,Mora, H., 2005. Determinación del
Marco Tectónico Regional para la Cadena Volcánicamás Septentrional de la Cordillera
Central de Colombia. Boletín de Geología, UIS 27 (44), 55–79.
Calvache,M.L.V., 1990. Pyroclastic deposits of the November 13, 1985 eruption of Nevado
del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 41 (1), 67–78.
Capasso, G. and Inguaggiato, S., 1998, A simple method for the determination of dissolved
gases in natural waters: an application to thermal waters from Vulcano Island.: Appl.
Geochem., v. 13, p. 631–642.
Craig, H., 1961. Isotopic variations inmeteoric waters, in Science.maggio vol. 133, nº 3465
(26):1702–1703. http://dx.doi.org/10.1126/science.133.3465.1702 PMID 17814749.
Espinosa Baquero, A., 2001. Erupciones históricas de los volcanes colombianos, 1500–
1995. Bogotá, D.C., Colombia : Academia Colombiana de Ciencias Exactas, Físicas y
Naturales. 16.
Federico, C., Capasso, G., Paonita, A., Favara, R., 2010. Effects of steam-heating processes
on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters
of Vulcano Island (Aeolian archipelago). J. Volcanol. Geotherm. Res. 192:178–190.
http://dx.doi.org/10.1016/j.jvolgeores.2010.02.020.
Forero, J., Zuluaga, C., Mojica, J., 2011. Alteration related to hydrothermal activity of the
Nevado del Ruiz volcano (NRV), Colombia. Boletín de Geología 33 (1), 59–67.
Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas
samples. Bull. Volcanol. 39 (1), 132–145.
Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44,
2021–2032.
Giggenbach, W.F., 1984. Mass transfer in hydrothermal alteration systems—a conceptual
approach. Geochimica et Cosmochimica Acta 48 (12), 2693–2711.
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca
geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765.
Giggenbach,W.F., 1990. The chemistry of fumarolic vapor and thermal-spring discharges
from the Nevado del Ruiz volcanic-magmatic-hydrothermal system. Colombia.
J. Volcanol. Geotherm. Res. 42 (1-2), 13–39.
Global Volcanism Program, 2012. Report on Nevado del Ruiz (Colombia). In:
Wunderman, R (Ed.), Bulletin of the Global Volcanism Network. 37:8. Smithsonian
Institution http://dx.doi.org/10.5479/si.GVP.BGVN201208-351020.
Herd, D.G., 1982. Glacial and Volcanic Geology of the Ruiz–Tolima Volcanic Complex, Cordillera
Central, Colombia. No. 8. Instituto Nacional de Investigaciones Geológico-
Mineras.
Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes
of water from the freezing to the critical temperature. Geochim. Cosmochim.
Acta 58, 3425–3437.
Horita, J., Cole, D.R.,Wesolowski, D.J., 1995. The activity-composition relationship of oxygen
and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration
of NaCl solutions to 350 °C. Geochim. Cosmochim. Acta 59 (6), 1139–1151.
HSC Chemistry 6.1®, 2008. Chemical Reaction and Equilibrium Software with Thermochemical
Database and Simulation Module. Outotec Research Oy, Pori.
Inguaggiato, C., Censi, P., Zuddas, P., Londoño, J.M., Chacón, Z., Alzate, D., Brusca, L.,
D'Alessandro, W., 2015. Geochemistry of REE, Zr and Hf in a wide range of pH and
water composition: the Nevado del Ruiz volcano-hydrothermal system (Colombia).
Chem. Geol. 417, 125–133.
Johnson, J., Oelkers, E., Helgeson, H., 1992. SUPCRT92: a software package for calculating
the standard molal thermodynamic properties of minerals, gases, aqueous species
and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947.
Krueger, A.J., Walter, L.S., Schnetzler, C.C., Doiron, S.D., 1990. TOMS measurement of the
sulfur dioxide emitted during the 1985 Nevado del Ruiz eruptions. J. Volcanol.
Geotherm. Res. 41 (1–4), 7–15.
Larson, P.B., Taylor, H.P., 1986. An oxygen isotope study of hydrothermal alteration in the
Lake-City Caldera, San- JuanMountains, Colorado. J. Volcanol. Geotherm. Res. 30, 47–82.
Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., Favara, R., 2010. Hydrothermal
processes governing the geochemistry of the crater fumaroles atMount Etna volcano
(Italy). Chem. Geol. 278 (1), 92–104.
Londoño, J.M., 2010. ASPECTOS RELEVANTES DE LA ACTIVIDAD DEL VOLCÁN NEVADO
DEL RUIZ. 1985–2008. Glaciares, nieves y hielos de América Latina. Cambio climático
y amenazas. Instituto Colombiano de Geología y Minería, p. 261.
Londoño, B.,Makario, J., 2010. Activity and Vp/Vs ratio of volcano-tectonic seismic swarm
zones at Nevado del Ruiz volcano, Colombia. Earth Sciences Research Journal 14 (1),
111–124.
Martinelli, B., 1990. Analysis of seismic patterns observed at Nevado del Ruiz volcano, Colombia
during August–September 1985. J. Volcanol. Geotherm. Res. 41 (1–4), 297–314.
Mejía, E.L., Velandia, F., Zuluaga, C.A., López, J.A., Cramer, T., 2012. ANÁLISIS ESTRUCTURAL
AL NORESTE DEL VOLCÁN NEVADO DEL RUÍZ, COLOMBIA–APORTE A LA
EXPLORACIÓN GEOTÉRMICA. Boletín de Geología 34 (1), 27–41.
Naranjo, J.L., Sigurdsson, H., Carey, S.N., Fritz, W., 1986. Eruption of the Nevado del Ruiz
volcano, Colombia, on 13 November 1985: tephra fall and lahars. Science 233
(4767), 961–963.
Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)–A Computer
Programfor Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical
Calculations: U.S. Geological SurveyWater-Resources Investigations Report
99–4259 (312 p).
Parra, E., Cepeda, H., 1990. Volcanic hazard maps of the Nevado del Ruiz volcano, Colombia.
J. Volcanol. Geotherm. Res. 42 (1–2), 117–127.
Reed, M.H., Spycher, N.F., 1984. Calculation of pH and mineral equilibria in hydrothermal
waters with application to geothermometry and studies of boiling and dilution.
Geochim. Cosmochim. Acta 48, 1479–1492.
Sano, Y., Wakita, H., Williams, S.N., 1990. Helium-isotope systematics at Nevado del Ruiz
volcano, Colombia: implications for the volcanic hydrothermal system. J. Volcanol.
Geotherm. Res. 42 (1), 41–52.
Shock, E.L., Holland, M., Meyer-Dombard, D., Amend, J.P., Osburn, G.R., Fischer, T.P., 2010.
Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems,
Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005–4043.
Sortino, F., Inguaggiato, S., Francofonte, S., 1991. Determination of HF, HCl, and total sulfur
in fumarolic fluids by ion chromatography. Acta Vulcanol. 1, 89–91.
Spycher, N.F., Reed, M.H., 1988. Fugacity coefficients of H2, CO2, CH4, H2O and ofH2O-CO2-
CH4 mixtures: a virial equation treatment for moderate pressures and temperatures
applicable to calculations of hydrothermal boiling. Geochim. Cosmochim. Acta 52,
739–749.
Stix, J., Layne, G.D.,Williams, S.N., 2003. Mechanisms of degassing at Nevado del Ruiz volcano,
Colombia. J. Geol. Soc. 160 (4), 507–521.
52 C. Federico et al. / Journal of Volcanology and Geothermal Research 346 (2017) 40–53
Sturchio, N.C., Williams, S.N., Garcia, N.P., Londono, A.C., 1988. The hydrothermal system
of Nevado del Ruiz volcano, Colombia. Bull. Volcanol. 50, 399–412.
Symonds, R.B., Gerlach, T.M., Reed, M.H., 2001. Magmatic gas scrubbing: implications for
volcano monitoring. J. Volcanol. Geotherm. Res. 108 (1), 303–341.
Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, A., Olaya, J.,
Rivera, C., 2000. Geodynamics of the northern Andes: Subductionsand
intracontinental deformation (Colombia). Tectonics 19, 787–813.
Thouret, J.C., 1990. Effects of the November 13, 1985 eruption on the snow pack and ice
cap of Nevado del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 41 (1–4),
177–201.
Uruena-Suarez, C.L., Zuluaga, C.A., Molano, J.C., 2012. Estudio de inclusiones fluidas en
pozos de gradiente térmico, volcán Nevado del Ruiz. Bol. Geol. 34 (2), 103–115.
Wagner,W., Overhof, U., 2006. Extended IAPWS-IF97 Steamtables, Version 2.0, 2006, CDROM.,
Jewel case. Elsevier 978-3-540-21412-0.
White, A.F., Chuma, N.J., Goff, F., 1992. Mass-transfer constraints on the chemical evolution
of an active hydrothermal system, Valles Caldera, New Mexico. J. Volcanol.
Geotherm. Res. 49, 233–253.
Williams, S.N., Sturchio, N.C., Mendez, R., Londoño, A., García, N., 1990. Sulfur dioxide
from Nevado del Ruiz volcano, Colombia: total flux and isotopic constraints on its origin.
J. Volcanol. Geotherm. Res. 42 (1–2), 53–68.
Type
article
File(s)![Thumbnail Image]()
![Thumbnail Image]()
Loading...
Name
VOLGEO5197Federico.pdf
Description
Open Access
Size
11.67 MB
Format
Adobe PDF
Checksum (MD5)
a7e6b9a463097bd4ff0ef46f75a20cca
Loading...
Name
Federico et al. 2017.pdf
Size
1.51 MB
Format
Adobe PDF
Checksum (MD5)
30e7ba601d372ded4f7a58cd09dffc6b