Repository logo
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • People
  • Organizations
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. Physical and transport properties of isotropic and anisotropic cracked rocks under hydrostatic pressure
 
  • Details
Options

Physical and transport properties of isotropic and anisotropic cracked rocks under hydrostatic pressure

Author(s)
Benson, P. 
Mineral, Ice and Rock Physics Laboratory, University College London, London, UK. 
Schubnel, A. 
Lassonde Institute, University of Toronto, Toronto, Ontario, Canada. 
Vinciguerra, S. 
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia 
Trovato, C. 
Dipartimento di Fisica e Astronomia, Universita`di Catania, Catania, Italy 
Meredith, P. G. 
Mineral, Ice and Rock Physics Laboratory, University College London, London, UK. 
Young, P. R. 
Lassonde Institute, University of Toronto, Toronto, Ontario, Canada. 
Language
English
Obiettivo Specifico
2.3. TTC - Laboratori di chimica e fisica delle rocce
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
J. Geophys. Res. 
Issue/vol(year)
/111 (2006)
Publisher
Agu
Pages (printed)
B04202
Issued date
2006
DOI
10.1029/2005JB003710
URI
https://www.earth-prints.org/handle/2122/2308
Subjects
04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks 
Keywords
  • microcracked

  • rocks

Abstract
A key consequence of the presence of microcracks within rock is their significant
influence upon elastic anisotropy and transport properties. Here two rock types (a basalt
and a granite) with contrasting microstructures, dominated by microcracks, have been
investigated using an advanced experimental arrangement capable of measuring porosity,
P wave velocity, S wave velocity, and permeability contemporaneously at effective
pressures up to 100 MPa. Using the Kachanov (1994) noninteractive effective medium
theory, the measured elastic wave velocities are inverted using a least squares fit,
permitting the recovery of the evolution of crack density and aspect ratio with increasing
isostatic pressure. Overall, the agreement between measured and predicted velocities is
good, with average error less than 0.05 km/s. At larger scales and above the percolation
threshold, macroscopic fluid flow also depends on the crack density and aspect ratio.
Using the permeability model of Gue´guen and Dienes (1989) and the crack density and
aspect ratio recovered from the elastic wave velocity inversion, we successfully predict the
evolution of permeability with pressure for direct comparison with the laboratory
measurements. We also calculate the evolution of the crack porosity with increasing
isostatic pressure, on the basis of the calculated crack density, and compare this directly
with the experimentally measured porosity. These combined experimental and modeling
results illustrate the importance of understanding the details of how rock microstructures
change in response to an external stimulus when predicting the simultaneous evolution
of rock physical properties.
References
Ayling, M. R., P. G. Meredith, and S. A. F. Murrell (1995), Microcracking
during triaxial deformation of porous rocks monitored by changes in rock
physical properties. 1. Elastic-wave propagation measurements on dry
rocks, Tectonophysics, 245, 205– 221.
Benson, P. M. (2004), Experimental study of void space, permeability and
elastic anisotropy in crustal rock under ambient and isostatic pressure,
Ph.D. thesis, 272 pp., Univ. of London, London.
Benson, P. M., P. G. Meredith, E. S. Platzman, and R. E. White (2005), Pore
fabric shape anisotropy in porous sandstone and its relation to elastic and
permeability anisotropy under isostatic pressure, Int. J. Rock Mech. Min.
Sci., 42, 890– 899, doi:10.1016/j.ijrmms.2005.05.003.
Brace, W. F. (1980), Permeability of crystalline and argillaceous rocks, Int.
J. Rock Mech. Min. Sci. Geomech. Abstr., 17, 241– 251.
Brace, W. F., J. B. Walsh, and W. T. Frangos (1968), Permeability of granite
under high pressure, J. Geophys. Res., 73, 2225– 2236.
Bruner, W. M. (1976), Comment on ‘‘Seismic velocities in dry and saturated
cracked solids’’ by R. J. O’Connell and B. Budiansky, J. Geophys.
Res., 81, 2573– 2576.
Chun, K.-Y., G. A. Henderson, and J. Liu (2004), Temporal changes in P
wave attenuation in the Loma Prieta rupture zone, J. Geophys. Res., 109,
B02317, doi:10.1029/2003JB002498.
Dienes, J. (1982), Permeability, percolation and statistical cracks mechanics,
in Issues in Rock Mechanics, edited by R. E. Goodman and
F. E. Heuze, pp. 86– 94, Am. Inst. of Min., Metal. and Pet. Eng., New
York.
Elsworth, D., and B. Voight (2001), The mechanics of harmonic gas
pressurisation and failure of lava domes, Geophys. J. Int., 145, 187–
198.
Fischer, G. J., and M. S. Paterson (1992), Measurement of permeability and
storage capacity in rocks during deformation at high temperature and
pressure, in Fault Mechanics and Transport Properties of Rocks, edited
by B. Evans and T.-F. Wong, pp. 213– 252, Elsevier, New York.
Gao, Y., and S. Crampin (2004), Observations of stress relaxation before
earthquakes, Geophys. J. Int., 157, 578– 582.
Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu
volcano: A possible eruption forecasting tool, Science, 306, 1543– 1547.
Gue´guen, Y., and J. Dienes (1989), Transport properties of rocks from
statistics and percolation, Math. Geol., 21, 1 –13.
Gue´guen, Y., T. Chelidze, and M. Le Ravalec (1997), Microstructures,
percolation thresholds, and rock physical properties, Tectonophysics,
279, 23– 35.
Hudson, J. A. (1980), Overall properties of a cracked solid, Math. Proc.
Cambridge Philos. Soc., 88, 371–384.
Hudson, J. A. (1990), Overall elastic properties of isotropic materials with
arbitrary distribution of circular cracks, Geophys. J. Int., 102, 465–469.
Hudson, J. A., E. Liu, and S. Crampin (1995), The mechanical properties of
materials with interconnected cracks and pores, Geophys. J. Int., 124,
105–112.
Hudson, J. A., T. Pointer, and E. Liu (2001), Effective-medium theories for
fluid-saturated materials with aligned cracks, Geophys. Prospect., 49,
509–522.
Jones, C., and P. Meredith (1998), An experimental study of elastic wave
propagation anisotropy and permeability anisotropy in an illitic shale,
paper presented at Eurock 98, Soc. of Pet. Eng., Trondheim, Norway.
Kachanov, M. (1994), Elastic solids with many cracks and related problems,
Adv. Appl. Mech., 30, 259–445.
Kano, S., and N. Tsuchiya (2002), Parallelepiped cooling joint and
anisotropy of P-wave velocity in the Takidani granitoid, Japan Alps,
J. Volcanol. Geotherm. Res., 114, 465–477.
Kern, H. (1978), The effect of high temperature and high confining pressure
on compressional wave velocities in quartz bearing and quartz free
igneous and metamorphic rocks, Tectonophysics, 44, 185– 203.
Madden, T. R. (1983), Microcrack connectivity in rocks: A renormalization
group approach to the critical phenomena of conduction and failure in
crystalline rocks, J. Geophys. Res., 88, 585– 592.
Miller, S. A. (2002), Properties of large ruptures and the dynamical influence
of fluids on earthquakes and faulting, J. Geophys. Res., 107(B9),
2182, doi:10.1029/2000JB000032.
Nishizawa, O. (1982), Seismic velocity anisotropy in a medium containing
oriented cracks: Transverse isotropy case, J. Phys. Earth, 30, 331– 347.
O’Connell, R., and B. Budiansky (1974), Seismic velocities in dry and
saturated rocks, J. Geophys. Res., 79, 5412–5426.
Peach, C., and C. Spiers (1996), Influence of crystal plastic deformation on
dilatancy and permeability development in synthetic salt rock, Tectonophysics,
256, 101– 128.
Rivier, N., E. Guyon, and E. Charlaix (1985), A geometrical approach to
percolation through random fractured rocks, Geol. Mag., 122, 157–162.
Rocchi, V., P. R. Sammonds, and C. R. J. Kilburn (2002), Flow and fracture
maps for basaltic rock deformation at high temperatures, J. Volcanol.
Geotherm. Res., 120, 25– 42.
Sayers, C. M., and M. Kachanov (1995), Microcrack induced elastic wave
anisotropy of brittle rocks, J. Geophys. Res., 100, 4149– 4156.
Schubnel, A., and Y. Gue´guen (2003), Dispersion and anisotropy of elastic
waves in cracked rocks, J. Geophys. Res., 108(B2), 2101, doi:10.1029/
2002JB001824.
Simmons, G., T. Todd, and W. S. Balridge (1975), Toward a quantitative
relationship between elastic properties and cracks in low porosity rocks,
Am. J. Sci., 275, 318– 345.
Simpson, G., Y. Gue´guen, and F. Schneider (2001), Permeability enhancement
due to microcrack dilatancy in the damage regime, J. Geophys.
Res., 106, 3999– 4016.
Stanchits, S., S. Vinciguerra, and G. Dresen (2006), Ultrasonic velocities,
acoustic emission characteristics and crack damage of basalt and granite,
Pure Appl. Geophys., in press.
Vinciguerra, S., C. Trovato, P. Meredith, and P. Benson (2005), Relating
seismic velocities, thermal cracking and permeability in Mt. Etna and
Iceland basalts, Int. J. Rock Mech. Min. Sci., 42, 900 – 910,
doi:10.1016/j.ijrmms.2005.05.022.
Walsh, J. B. (1965), The effect of cracks on the compressibility of rock,
J. Geophys. Res., 70, 381– 389.
Zimmerman, R. W. (1991), Compressibility of Sandstones, Dev. Geosci.,
vol. 29, 173 pp., Elsevier, New York.
Type
article
File(s)
Loading...
Thumbnail Image
Download
Name

235.pdf

Size

1.25 MB

Format

Adobe PDF

Checksum (MD5)

c9cb89f79ca15caef0373658113d9bff

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback