Options
Canterbury Basin Sea Level
Author(s)
Other Titles
Global and local controlson continental margin stratigraphy
Sponsors
Integrated Ocean Drilling Program Management International
Language
English
Obiettivo Specifico
2.2. Laboratorio di paleomagnetismo
Status
Published
Peer review journal
No
Issued date
2010
Alternative Location
Series/Report No.
doi:10.2204
iodp.pr.317.2010.
Abstract
Integrated Ocean Drilling Program (IODP) Expedition 317 was devoted to understanding
the relative importance of global sea level (eustasy) versus local tectonic and sedimentary processes in controlling continental margin sedimentary cycles. The expedition
recovered sediments from the Eocene to recent period, with a particular focus
on the sequence stratigraphy of the late Miocene to recent, when global sea level change was dominated by glacioeustasy. Drilling in the Canterbury Basin, on the eastern
margin of the South Island of New Zealand, takes advantage of high rates of Neogene
sediment supply, which preserves a high-frequency (0.1–0.5 m.y.) record of depositional cyclicity. The Canterbury Basin provides an opportunity to study the complex interactions between processes responsible for the preserved stratigraphic record
of sequences because of the proximity of an uplifting mountain chain, the Southern Alps, and strong ocean currents. Currents have locally built large, elongate sediment drifts within the prograding Neogene section. Expedition 317 did not drill into one of these elongate drifts, but currents are inferred to have strongly influenced deposition across the basin, including in locations lacking prominent mounded drifts.
Upper Miocene to recent sedimentary sequences were cored in a transect of three sites on the continental shelf (landward to basinward, Sites U1353, U1354, and U1351) and one on the continental slope (Site U1352). The transect provides a stratigraphic record of depositional cycles across the shallow-water environment most directly affected
by relative sea level change. Lithologic boundaries, provisionally correlative with seismic sequence boundaries, have been identified in cores from each site and provide insights into the origins of seismically resolvable sequences. This record will be used to estimate the timing and amplitude of global sea level change and to document
the sedimentary processes that operate during sequence formation. Sites U1353 and U1354 provide significant, double-cored, high-recovery sections through the Holocene
and late Quaternary for high-resolution study of recent glacial cycles in a continental
shelf setting.
Continental slope Site U1352 represents a complete section from modern slope terrigenous
sediment to hard Eocene limestone, with all the associated lithologic, biostratigraphic,
physical, geochemical, and microbiological transitions. The site also provides a record of ocean circulation and fronts during the last ~35 m.y. The early Oligocene (~30 Ma) Marshall Paraconformity was the deepest drilling target of Expedition
317 and is hypothesized to represent intensified current erosion or nondeposition associated with the initiation of thermohaline circulation following the separation of Australian and Antarctica.
Expedition 317 set a number of scientific ocean drilling records: (1) deepest hole drilled in a single expedition and second deepest hole in the history of scientific ocean drilling (Hole U1352C, 1927 m); (2) deepest hole and second deepest hole drilled by the R/V JOIDES Resolution on a continental shelf (Hole U1351B, 1030 m; Hole U1353B, 614 m); (3) shallowest water depth for a site drilled by the JOIDES Resolution
for scientific purposes (Site U1353, 84.7 m water depth); and (4) deepest sample
taken by scientific ocean drilling for microbiological studies (1925 m, Site U1352).
Expedition 317 supplements previous drilling of sedimentary sequences for sequence stratigraphic and sea level objectives, particularly drilling on the New Jersey margin (Ocean Drilling Program [ODP] Legs 150, 150X, 174A, and 174AX and IODP Expedition
313) and in the Bahamas (ODP Leg 166), but includes an expanded Pliocene section.
Completion of at least one transect across a geographically and tectonically distinct siliciclastic margin was the necessary next step in deciphering continental margin stratigraphy. Expedition 317 also complements ODP Leg 181, which focused on drift development in more distal parts of the Eastern New Zealand Oceanic Sedimentary
System (ENZOSS).
the relative importance of global sea level (eustasy) versus local tectonic and sedimentary processes in controlling continental margin sedimentary cycles. The expedition
recovered sediments from the Eocene to recent period, with a particular focus
on the sequence stratigraphy of the late Miocene to recent, when global sea level change was dominated by glacioeustasy. Drilling in the Canterbury Basin, on the eastern
margin of the South Island of New Zealand, takes advantage of high rates of Neogene
sediment supply, which preserves a high-frequency (0.1–0.5 m.y.) record of depositional cyclicity. The Canterbury Basin provides an opportunity to study the complex interactions between processes responsible for the preserved stratigraphic record
of sequences because of the proximity of an uplifting mountain chain, the Southern Alps, and strong ocean currents. Currents have locally built large, elongate sediment drifts within the prograding Neogene section. Expedition 317 did not drill into one of these elongate drifts, but currents are inferred to have strongly influenced deposition across the basin, including in locations lacking prominent mounded drifts.
Upper Miocene to recent sedimentary sequences were cored in a transect of three sites on the continental shelf (landward to basinward, Sites U1353, U1354, and U1351) and one on the continental slope (Site U1352). The transect provides a stratigraphic record of depositional cycles across the shallow-water environment most directly affected
by relative sea level change. Lithologic boundaries, provisionally correlative with seismic sequence boundaries, have been identified in cores from each site and provide insights into the origins of seismically resolvable sequences. This record will be used to estimate the timing and amplitude of global sea level change and to document
the sedimentary processes that operate during sequence formation. Sites U1353 and U1354 provide significant, double-cored, high-recovery sections through the Holocene
and late Quaternary for high-resolution study of recent glacial cycles in a continental
shelf setting.
Continental slope Site U1352 represents a complete section from modern slope terrigenous
sediment to hard Eocene limestone, with all the associated lithologic, biostratigraphic,
physical, geochemical, and microbiological transitions. The site also provides a record of ocean circulation and fronts during the last ~35 m.y. The early Oligocene (~30 Ma) Marshall Paraconformity was the deepest drilling target of Expedition
317 and is hypothesized to represent intensified current erosion or nondeposition associated with the initiation of thermohaline circulation following the separation of Australian and Antarctica.
Expedition 317 set a number of scientific ocean drilling records: (1) deepest hole drilled in a single expedition and second deepest hole in the history of scientific ocean drilling (Hole U1352C, 1927 m); (2) deepest hole and second deepest hole drilled by the R/V JOIDES Resolution on a continental shelf (Hole U1351B, 1030 m; Hole U1353B, 614 m); (3) shallowest water depth for a site drilled by the JOIDES Resolution
for scientific purposes (Site U1353, 84.7 m water depth); and (4) deepest sample
taken by scientific ocean drilling for microbiological studies (1925 m, Site U1352).
Expedition 317 supplements previous drilling of sedimentary sequences for sequence stratigraphic and sea level objectives, particularly drilling on the New Jersey margin (Ocean Drilling Program [ODP] Legs 150, 150X, 174A, and 174AX and IODP Expedition
313) and in the Bahamas (ODP Leg 166), but includes an expanded Pliocene section.
Completion of at least one transect across a geographically and tectonically distinct siliciclastic margin was the necessary next step in deciphering continental margin stratigraphy. Expedition 317 also complements ODP Leg 181, which focused on drift development in more distal parts of the Eastern New Zealand Oceanic Sedimentary
System (ENZOSS).
References
Abbott, S.T., 1992. The mid-Pleistocene Waiomio Shellbed (c. 500–600 ky), Wanganui Basin, New Zealand. Alcheringa: Australas. J. Palaeontol., 16(2):171–180. doi:10.1080/03115519208619038
Abbott, S.T., and Carter, R.M., 1994. The sequence architecture of mid-Pleistocene (0.35–0.95 Ma) cyclothems from New Zealand: facies development during a period of known orbital control on sea-level cyclicity. In de Boer, P.L., and Smith, D.G. (Eds.), Orbital Forcing and Cyclic Sequences, Spec. Publ. Int. Assoc. Sedimentol., 19:367–394.
Abbott, S.T., and Carter, R.M., 1999. Stratigraphy of the Castlecliffian type section: 10 mid-Pleistocene sequences from the Wanganui coast, New Zealand. N. Z. J. Geol. Geophys., 42:91–111. http://www.royalsociety.org.nz/Site/publish/Journals/nzjgg/1999/8.aspx
Abbott, S.T., Naish, T.R., Carter, R.M., and Pillans, B.J., 2005. Sequence stratigraphy of the Nukumaruan stratotype (Pliocene-Pleistocene, c. 2.08–1.63 Ma), Wanganui Basin, New Zealand. J. R. Soc. N. Z., 35(1–2):123–150.
Adams, C.J.D., 1979. Age and origin of the southern Alps. In Walcott, R.I., and Cresswell, M.M. (Eds.), The Origin of the Southern Alps. Bull.—Roy. Soc. N. Z., 18:73–78.
Austin, J.A., Jr., Christie-Blick, N., Malone, M.J., et al., 1998. Proc. ODP, Init. Repts., 174A: College
Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.174a.1998
Batt, G.E., Braun, J., Kohn, B., and McDougall, I., 2000. Thermochronological analysis of the dynamics of the southern Alps, New Zealand. Geol. Soc. Am. Bull., 112(2):250–266. doi:10.1130/0016-7606(2000)112<0250:TAOTDO>2.3.CO;2
Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Cenozoic geochronology
and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 54:129–212.
Billups, K., and Schrag, D.P., 2002. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifers. Paleoceanography,
17(1):1003. doi:10.1029/2000PA000567
Browne, G.H., and Field, B.D., 1988. A review of Cretaceous–Cenozoic sedimentation and tectonics, east coast, South Island, New Zealand. In James, D.P., and Leckie, D.A. (Eds.), Sequences, Stratigraphy, Sedimentology: Surface and Subsurface. Mem.—Can. Soc. Pet. Geol., 15:37–48.
Browne, G.H., and Naish, T.R., 2003. Facies development and sequence architecture of a late Quaternary fluvial-marine transition, Canterbury Plains and shelf, New Zealand: implications
for forced regressive deposits. Sediment. Geol., 158(1–2):57–86. doi:10.1016/S0037-0738(02)00258-0
Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100(B4):6093–6095. doi:10.1029/94JB03098
Cande, S.C., and Stock, J.M., 2004. Pacific–Antarctic–Australia motion and the formation of the Macquarie Plate. Geophys. J. Int., 157(1):399–414. doi:10.1111/j.1365-246X.2004.02224.x
Carter, L., Carter, R.M., McCave, I.N., and Gamble, J., 1996. Regional sediment recycling in the abyssal southwest Pacific Ocean. Geology, 24(8):735–738. doi:10.1130/0091-7613(1996)024<0735:RSRITA>2.3.CO;2Carter, R.M., 1985. The mid-Oligocene Marshall Paraconformity, New Zealand: coincidence
with global eustatic sea-level fall or rise? J. Geol., 93(3):359–371. doi:10.1086/628957
Carter, R.M., 1988. Post-breakup stratigraphy of the Kaikoura Synthem (Cretaceous–Cenozoic),
continental margin, southeastern New Zealand. N. Z. J. Geol. Geophys., 31:405–429.
Carter, R.M., 2007. The role of intermediate currents in continental shelf-slope accretion: Canterbury Drifts, SW Pacific Ocean. In Viana, A.R., and Rebesco, M. (Eds.), Economic and Paleoceanographic Significance of Contourite Deposits. Geol. Soc. Spec. Publ., 276(1):129–154. doi:10.1144/GSL.SP.2007.276.01.07
Carter, R.M., Abbott, S.T., Fulthorpe, C.S., Haywick, D.W., and Henderson, R.A., 1991. Application
of global sea-level and sequence-stratigraphic models in Southern Hemisphere Neogene strata from New Zealand. In Macdonald, D.I.M. (Ed.), Sedimentation, Tectonics, and Eustasy: Sea-level Changes at Active Margins. Spec. Publ. Int. Assoc. Sedimentol., 12:41–65.
Carter, R.M., Fulthorpe, C.S., and Lu, H., 2004a. Canterbury drifts at Ocean Drilling Program Site 1119, New Zealand: climatic modulation of southwest Pacific intermediate water flows since 3.9 Ma. Geology, 32(11):1005–1008. doi:10.1130/G20783.1
Carter, R.M., and Gammon, P., 2004. New Zealand maritime glaciation: millennial-scale southern climate change since 3.9 Ma. Science, 304(5677):1659–1662. doi:10.1126/science.
1093726
Carter, R.M., Gammon, P.R., and Millwood, L., 2004b. Glacial–interglacial (MIS 1–10) migrations
of the subtropical front across ODP Site 1119, Canterbury Bight, Southwest Pacific Ocean. Mar. Geol., 205(1–4):29–58. doi:10.1016/S0025-3227(04)00017-9
Carter, R.M., and Landis, C.A., 1972. Correlative Oligocene unconformities in southern Australasia.
Nature (London), Phys. Sci., 237:12–13.
Carter, R.M., McCave, I.N., and Carter, L., 2004c. Leg 181 synthesis: fronts, flows, drifts, volcanoes,
and the evolution of the southwestern gateway to the Pacific Ocean, eastern New Zealand. In Richter, C. (Ed.), Proc. ODP, Sci. Results, 181: College Station, TX (Ocean Drilling
Program), 1–111. doi:10.2973/odp.proc.sr.181.210.2004
Carter, R.M., and Norris, R.J., 1976. Cainozoic history of southern New Zealand: an accord between geological observations and plate-tectonic predictions. Earth Planet. Sci. Lett.,31(1):85–94. doi:10.1016/0012-821X(76)90099-6
Chiswell, S.M., 1996. Variability in the Southland Current, New Zealand. N. Z. J. Mar. Freshwater
Res., 30:1–17. http://www.royalsociety.org.nz/Site/publish/Journals/nzjmfr/1996/100.aspx
Christie-Blick, N., 1991. Onlap, offlap, and the origin of unconformity-bounded depositional sequences. Mar. Geol., 97(1–2):35–56. doi:10.1016/0025-3227(91)90018-Y
Christie-Blick, N., Austin, J.A., Jr., and Shipboard Scientific Party, 1998. Introduction: Oligocene
to Pleistocene eustatic change at the New Jersey continental margin—a test of sequence stratigraphy. In Austin, J.A., Jr., Christie-Blick, N., Malone, M.J., et al., Proc. ODP, Init. Repts., 174A: College Station, TX (Ocean Drilling Program), 5–16. doi:10.2973/odp.proc.ir.174A.101.1998
Christie-Blick, N., and Driscoll, N.W., 1995. Sequence stratigraphy. Annu. Rev. Earth Planet. Sci., 23(1):451–478. doi:10.1146/annurev.ea.23.050195.002315
Christie-Blick, N., Mountain, G.S., and Miller, K.G., 1990. Seismic stratigraphic record of sea-level change. In National Research Council (Ed.), Sea-level Change: Washington, DC (National Academy Press), 116–140.Cloetingh, S., McQueen, H., and Lambeck, K., 1985. On a tectonic mechanism for regional sealevel variations. Earth Planet. Sci. Lett., 75(2–3):157–166. doi:10.1016/0012-821X(85)90098-6
Coombs, D.C.R., Kawach, Y., Landis, C.A., McDonough, W.F., and Reay, A., 1986, Cenozoic volcanism in north, east, and central Otago. In Smith, I.E.M. (Ed.), Late Cenozoic Volcanism
in New Zealand. Bull—R. Soc. N. Z., 23:278-312.
COSOD II, 1987. Report of the 2nd Conference on Scientific Ocean Drilling: Washington/Strasbourg
(JOIDES/European Sci. Found.).
Dewey, J.F., and Pitman, W.C., 1998. Sea level changes: mechansims, magnitudes and rates. In Pindell, J.L., and Drake, C.L. (Eds.), Paleogeographic Evolution and Nonglacial Eustasy, Northern South America. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 58:1–16.
Eberli, G., Swart, P., and Malone, M., 1996. ODP Prelim. Rept., 166. doi:10.2973/odp.pr.166.1996
Expedition 313 Scientists, 2010. New Jersey Shallow Shelf: shallow-water drilling of the New Jersey continental shelf: global sea level and architecture of passive margin sediments. IODP Prel. Rept., 313. doi:10.2204/iodp.pr.313.2010
Field, B.D., and Browne, G.H., 1989. Cretaceous and Cenozoic Sedimentary Basins and Geological Evolution of Canterbury Region, South Island, New Zealand. N. Z. Geol. Surv., Basin Stud., 2.
Fleming, C.A., 1962. New Zealand biogeography: a paleontologist’s approach. Tuatara, 10:53–108.
Fulthorpe, C.S., Miller, K.G., Droxler, A.W., Hesselbo, S.P., Camoin, G.F., and Kominz, M.A., 2008. Drilling to decipher long-term sea-level changes and effects—a joint consortium for Ocean Leadership, ICDP, IODP, DOSECC, and Chevron workshop. Sci. Drill., 6:19–28. doi:10.2204/iodp.sd.6.02.2008
Fulthorpe, C.S., and Carter, R.M., 1989. Test of seismic sequence methodology on a Southern Hemisphere passive margin: the Canterbury Basin, New Zealand. Mar. Pet. Geol.,6(4):348–359. doi:10.1016/0264-8172(89)90031-7
Fulthorpe, C.S., and Carter, R.M., 1991. Continental-shelf progradation by sediment-drift accretion. Geol. Soc. Am. Bull., 103(2):300–309. doi:10.1130/0016-7606(1991)103<0300:CSPBSD>2.3.CO;2
Fulthorpe, C.S., Carter, R.M., Miller, K.G., and Wilson, J., 1996. Marshall paraconformity: a mid-Oligocene record of inception of the Antarctic Circumpolar Current and coeval glacio-
eustatic lowstand? Mar. Pet. Geol., 13(1):61–77. doi:10.1016/0264-8172(95)00033-X
Haq, B.U., Hardenbol, J., and Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235(4793):1156–1167. doi:10.1126/science.235.4793.1156
Hawkes, P.W., and Mound, D.G., 1984. Clipper-1 geological completion report. N. Z. Geol. Surv. Open-File Rep., 1036.
Hoernle, K., White, J.D.L., van den Bogaard, P., Hauff, F., Coombs, D.S., Werner, R., Timm, C., Garbe-Schönberg, D., Reay, A., and Cooper, A.F., 2006. Cenozoic intraplate volcanism on New Zealand: upwelling induced by lithospheric removal. Earth Planet. Sci. Lett., 248(1–2):350–367. doi:10.1016/j.epsl.2006.06.001
Kamp, P.J.J., 1987. Age and origin of the New Zealand orocline in relation to alpine fault movement. J. Geol. Soc. (London, U. K.), 144(4):641–652. doi:10.1144/gsjgs.144.4.0641
Karner, G.D., 1986. Effects of lithospheric in-plane stress on sedimentary basin stratigraphy. Tectonics, 5(4):573–588. doi:10.1029/TC005i004p00573Karner, G.D., Driscoll, N.W., and Weissel, J.K., 1993. Reponse of the lithosphere to in-plane force variations. Earth Planet. Sci. Lett., 114(4):397–416. doi:10.1016/0012-821X(93)90072-H
Kennett, J.P., and von der Borch, C.C., 1986. Southwest Pacific Cenozoic paleoceanography. In Kennett, J.P., von der Borch, C.C., et al., Init. Repts. DSDP, 90: Washington, DC (U.S. Govt. Printing Office), 1493–1517. doi:10.2973/dsdp.proc.90.148.1986
King, P.R., 2000. Tectonic reconstructions of New Zealand: 40 Ma to the present. N. Z. J. Geol. Geophys., 43:611–638.
Kominz, M.A., Miller, K.G., and Browning, J.V., 1998. Long-term and short-term global Cenozoic
sea-level estimates. Geology, 26(4):311–314. doi:10.1130/0091-7613(1998)026<0311:LTASTG>2.3.CO;2
Kominz, M.A., and Pekar, S.F., 2001. Oligocene eustasy from two-dimensional sequence stratigraphic
backstripping. Geol. Soc. Am. Bull., 113(3):291–304. doi:10.1130/0016-7606(2001)113<0291:OEFTDS>2.0.CO;2
Lavier, L.L., Steckler, M.S., and Brigaud, F., 2000. An improved method for reconstructing the stratigraphy and bathymetry of continental margins: application to the Cenozoic tectonic
and sedimentary history of Congo margin. AAPG Bull., 78:923–939.
Lavier, L.L., Steckler, M.S., and Brigaud, F., 2001. Climatic and tectonic control on the Cenozoic
evolution of the West African margin. Mar. Geol., 178(1–4):63–80. doi:10.1016/S0025-3227(01)00175-X
Lewis, D.W., 1992. Anatomy of an unconformity on mid-Oligocene Amuri limestone, Canterbury,
New Zealand. N .Z. J. Geol. Geophys., 35(4):463–475.
Loutit, T.S. (Ed.), 1992. JOIDES Sea Level Working Group (SLWG) Report: Woods Hole, MA (Woods Hole Oceanographic Institute).
Lu, H., and Fulthorpe, C.S., 2004. Controls on sequence stratigraphy of a middle Miocene–Holocene, current-swept, passive margin: offshore Canterbury Basin, New Zealand. Geol. Soc. Am. Bull., 116(11):1345–1366. doi:10.1130/B2525401.1
Lu, H., Fulthorpe, C.S., and Mann, P., 2003. Three-dimensional architecture of shelf-building sediment drifts in the offshore Canterbury Basin, New Zealand. Mar. Geol., 193(1–2):19–47. doi:10.1016/S0025-3227(02)00612-6
Lu, H., Fulthorpe, C.S., Mann, P., and Kominz, M., 2005. Miocene–Recent tectonic and climate
controls on sediment supply and sequence stratigraphy: Canterbury Basin, New Zealand. Basin Res., 17(2):311–328.
McGonigal, K., and Di Stefano, A., 2002. Calcareous nannofossil biostratigraphy of the Eocene–Oligocene Transition, ODP Sites 1123 and 1124. In Richter, C. (Ed.), Proc. ODP, Sci. Results, 181: College Station, TX (Ocean Drilling Program), 1–22. doi:10.2973/odp.proc.sr.181.207.2002
McHugh, C.M.G., and Olson, H.C., 2002. Pleistocene chronology of continental margin sedimentation:
new insights into traditional models, New Jersey. Mar. Geol., 186(3–4):389–411. doi:10.1016/S0025-3227(02)00198-6
Miall, A.D, and Miall, C.E., 2001. Sequence stratigraphy as a scientific enterprise: the evolution
and persistence of conflicting paradigms. Earth Sci. Rev., 54(4):321–348. doi:10.1016/S0012-8252(00)00041-6
Miller, K.G., et al., 1994. Proc. ODP, Init. Repts., 150X: College Station, TX (Ocean Drilling Program).
doi:10.2973/odp.proc.ir.150X.1994Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugar-
man, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F., 2005. The Phanerozoic record of global sea-level change. Science, 310(5752):1293–1298. doi:10.1126/science.1116412
Miller, K.G., and Mountain, G.S., 1994. Global sea-level change and the New Jersey margin. In Mountain, G.S., Miller, K.G., Blum, P., et al., Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program), 11–20. doi:10.2973/odp.proc.ir.150.102.1994
Miller, K.G., Mountain, G.S., the Leg 150 Shipboard Party, and Members of the New Jersey Coastal Plain Drilling Project, 1996. Drilling and dating New Jersey Oligocene–Miocene sequences: ice volume, global sea level, and Exxon records. Science, 271(5252):1092–1095. doi:10.1126/science.271.5252.1092
Miller, K.G., Sugarman, P.J., Browning, J.V., et al., 1998. Proc. ODP, Init. Repts., 174AX: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.174AX.1998
Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96(B4):6829–6848. doi:10.1029/90JB02015
Milne, A.D., Simpson, C., and Threadgold, P., 1975. Resolution-1 well completion report. N. Z. Geol. Surv. Open-File Rep., 648.
Mitchum, R.M., Vail, P.R., and Thompson, S., 1977. Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphic analysis. InPayton, C.E. (Ed.), Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Mem., 26:53–62.
Molnar, P., Atwater, T., Mammerickx, J., and Smith, S., 1975. Magnetic anomalies, bathymetry
and the tectonic evolution of the South Pacific since the Late Cretaceous. Geophys. J. R. Astron. Soc., 40:383–420.
Morono, Y., Terada, T., Masui, N., and Inagaki, F., 2009. Discriminative detection and enumeration
of microbial life in marine subsurface sediments. ISME J., 3(5):503–511. doi:10.1038/ismej.2009.1
Morris, M., Stanton, B., and Neil, H., 2001. Subantarctic oceanography around New Zealand: preliminary results from an ongoing survey. N. Z. J. Mar. Freshwater Res., 35:499–519.
Mountain, G.S., Miller, K.G., Blum, P., et al., 1994. Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.150.1994
Naish, T.R., Wehland, F., Wilson, G.S., Browne, G.H., Cook, R.A., Morgans, H.E.G., Rosenberg,
M., King, P.R., Smale, D., Nelson, C.S., Kamp, P.J.J., and Ricketts, B., 2005. An integrated
sequence stratigraphic, palaeonenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea level changes. J. R. Soc. N. Z., 35(1–2):151–196. http://www.royalsociety.org.nz/Site/publish/Journals/jrsnz/2005/006.aspx
Nelson, C.S., and Cooke, P.J., 2001. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic—a synthesis. N. Z. J. Geol. Geophys., 44:535–553. http://www.royalsociety.org.nz/Site/publish/Journals/nzjgg/2001/38.aspx
Norris, R.J., Carter, R.M., and Turnbull, I.M., 1978. Cainozoic sedimentation in basins adjacent
to a major continental transform boundary in southern New Zealand. J. Geol. Soc. (London, U. K.), 135(2):191–205. doi:10.1144/gsjgs.135.2.0191
Osterberg, E.C., 2006. Late Quaternary (marine isotope stages 6–1) seismic sequence stratigraphic
evolution of the Otago continental shelf, New Zealand. Mar. Geol., 229(3–4):159–178. doi:10.1016/j.margeo.2006.03.005Posamentier, H.W., Jervey, M.T., and Vail, P.R., 1988. Eustatic controls on clastic deposition, I.
Conceptual framework. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner, J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach.Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:109–124.
Posamentier, H.W., and Vail, P.R., 1988. Eustatic controls on clastic deposition, II: Sequence and systems tract models. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner, J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach.Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:125–154.
Reyes, A.G., 2007. Abandoned oil and gas wells: a reconnaissance study of an unconventional
geothermal resource. GNS Sci. Rep., 2007/23.
Reynolds, D.J., Steckler, M.S., and Coakley, B.J., 1991. The role of the sediment load in sequence stratigraphy: the influence of flexural isostasy and compaction. J. Geophys. Res., [Solid Earth], 96(B4):6931–6949. doi:10.1029/90JB01914
Saul, G., Naish, T.R., Abbott, S.T., and Carter, R.M., 1999. Sedimentary cyclicity in the marine Pliocene–Pleistocene of the Wanganui Basin (New Zealand): sequence stratigraphic motifs characteristic of the past 2.5 m.y. Geol. Soc. Am. Bull., 111(4):524–537. doi:10.1130/0016-7606(1999)111<0524:SCITMP>2.3.CO;2
Shipboard Scientific Party, 1999a. Leg 181 summary: southwest Pacific paleoceanography. InCarter, R.M., McCave, I.N., Richter, C., Carter, L., et al., Proc. ODP, Init. Repts., 181: College
Station, TX (Ocean Drilling Program), 1–80. doi:10.2973/odp.proc.ir.181.101.2000
Shipboard Scientific Party, 1999b. Site 1119: drift accretion on Canterbury Slope. In Carter, R.M., McCave, I.N., Richter, C., Carter, L., et al., Proc. ODP, Init. Repts., 181: College Station,
TX (Ocean Drilling Program), 1–112. doi:10.2973/odp.proc.ir.181.103.2000
Steckler, M.S., Mountain, G.S., Miller, K.G., and Christie-Blick, N., 1999. Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping. Mar. Geol., 154(1–4):399–420. doi:10.1016/S0025-3227(98)00126-1
Tippett, J.M., and Kamp, P.J.J., 1993a. Fission track analysis of the late Cenozoic vertical kinematics
of continental Pacific crust, South Island, New Zealand. J. Geophys. Res., [Solid Earth Planets], 98(9):16119–16148.
Tippett, J.M., and Kamp, P.J.J., 1993b. The role of faulting in rock uplift in the Southern Alps, New Zealand. N. Z. J. Geol. Geophys., 36(4):497–504.
Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N., and Perez-Cruz, G., 1991. The stratigraphic
signatures of tectonics, eustasy, and sedimentology—an overview. In Einsele, G., Ricken, W., and Seilacher, A. (Eds.), Cycles and Events in Stratigraphy: Berlin (Springer), 617–659.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Jr., Vail, P.R., Sarg, J.F., Loutit, T.S., and Hardenbol, J., 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner,
J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:39–45.
Walcott, R.I., 1998. Modes of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev. Geophys., 36(1):1–26. doi:10.1029/97RG03084
Ward, D.M., and Lewis, D.W., 1975. Paleoenvironmental implications of storm-scoured ichnofossiliferous
mid-Tertiary limestones, Waihao District, South Canterbury, New Zealand.
N. Z. J. Geol. Geophys., 18:881–908.
Watkins, J.S., and Mountain, G.S. (Eds.), 1990. Role of ODP Drilling in the Investigation of Global Changes in Sea Level [JOI/USSAC Workshop, El Paso, TX, 24–26 October 1988].Watters, W.A., 1978. Tertiary volcanism–Miocene. In Suggate, P.R., and Stevens, G.R. (Eds.), The Geology of New Zealand: Wellington (New Zealand Govt. Printer), 2:637–644.
Wellman, H.W., 1971. Age of the Alpine Fault, New Zealand. Proc Int. Geol. Congr, 22nd, 4:148–162.
Wilding, A., and Sweetman, I.A.D., 1971. Endeavour-1 petroleum report. N. Z. Geol. Surv. Open-File Rep., 303.
Wilson, I.R., 1985. Galleon-1 geological completion report. N. Z. Geol. Surv. Open-File Rep.,1146.
Abbott, S.T., and Carter, R.M., 1994. The sequence architecture of mid-Pleistocene (0.35–0.95 Ma) cyclothems from New Zealand: facies development during a period of known orbital control on sea-level cyclicity. In de Boer, P.L., and Smith, D.G. (Eds.), Orbital Forcing and Cyclic Sequences, Spec. Publ. Int. Assoc. Sedimentol., 19:367–394.
Abbott, S.T., and Carter, R.M., 1999. Stratigraphy of the Castlecliffian type section: 10 mid-Pleistocene sequences from the Wanganui coast, New Zealand. N. Z. J. Geol. Geophys., 42:91–111. http://www.royalsociety.org.nz/Site/publish/Journals/nzjgg/1999/8.aspx
Abbott, S.T., Naish, T.R., Carter, R.M., and Pillans, B.J., 2005. Sequence stratigraphy of the Nukumaruan stratotype (Pliocene-Pleistocene, c. 2.08–1.63 Ma), Wanganui Basin, New Zealand. J. R. Soc. N. Z., 35(1–2):123–150.
Adams, C.J.D., 1979. Age and origin of the southern Alps. In Walcott, R.I., and Cresswell, M.M. (Eds.), The Origin of the Southern Alps. Bull.—Roy. Soc. N. Z., 18:73–78.
Austin, J.A., Jr., Christie-Blick, N., Malone, M.J., et al., 1998. Proc. ODP, Init. Repts., 174A: College
Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.174a.1998
Batt, G.E., Braun, J., Kohn, B., and McDougall, I., 2000. Thermochronological analysis of the dynamics of the southern Alps, New Zealand. Geol. Soc. Am. Bull., 112(2):250–266. doi:10.1130/0016-7606(2000)112<0250:TAOTDO>2.3.CO;2
Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Cenozoic geochronology
and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 54:129–212.
Billups, K., and Schrag, D.P., 2002. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifers. Paleoceanography,
17(1):1003. doi:10.1029/2000PA000567
Browne, G.H., and Field, B.D., 1988. A review of Cretaceous–Cenozoic sedimentation and tectonics, east coast, South Island, New Zealand. In James, D.P., and Leckie, D.A. (Eds.), Sequences, Stratigraphy, Sedimentology: Surface and Subsurface. Mem.—Can. Soc. Pet. Geol., 15:37–48.
Browne, G.H., and Naish, T.R., 2003. Facies development and sequence architecture of a late Quaternary fluvial-marine transition, Canterbury Plains and shelf, New Zealand: implications
for forced regressive deposits. Sediment. Geol., 158(1–2):57–86. doi:10.1016/S0037-0738(02)00258-0
Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100(B4):6093–6095. doi:10.1029/94JB03098
Cande, S.C., and Stock, J.M., 2004. Pacific–Antarctic–Australia motion and the formation of the Macquarie Plate. Geophys. J. Int., 157(1):399–414. doi:10.1111/j.1365-246X.2004.02224.x
Carter, L., Carter, R.M., McCave, I.N., and Gamble, J., 1996. Regional sediment recycling in the abyssal southwest Pacific Ocean. Geology, 24(8):735–738. doi:10.1130/0091-7613(1996)024<0735:RSRITA>2.3.CO;2Carter, R.M., 1985. The mid-Oligocene Marshall Paraconformity, New Zealand: coincidence
with global eustatic sea-level fall or rise? J. Geol., 93(3):359–371. doi:10.1086/628957
Carter, R.M., 1988. Post-breakup stratigraphy of the Kaikoura Synthem (Cretaceous–Cenozoic),
continental margin, southeastern New Zealand. N. Z. J. Geol. Geophys., 31:405–429.
Carter, R.M., 2007. The role of intermediate currents in continental shelf-slope accretion: Canterbury Drifts, SW Pacific Ocean. In Viana, A.R., and Rebesco, M. (Eds.), Economic and Paleoceanographic Significance of Contourite Deposits. Geol. Soc. Spec. Publ., 276(1):129–154. doi:10.1144/GSL.SP.2007.276.01.07
Carter, R.M., Abbott, S.T., Fulthorpe, C.S., Haywick, D.W., and Henderson, R.A., 1991. Application
of global sea-level and sequence-stratigraphic models in Southern Hemisphere Neogene strata from New Zealand. In Macdonald, D.I.M. (Ed.), Sedimentation, Tectonics, and Eustasy: Sea-level Changes at Active Margins. Spec. Publ. Int. Assoc. Sedimentol., 12:41–65.
Carter, R.M., Fulthorpe, C.S., and Lu, H., 2004a. Canterbury drifts at Ocean Drilling Program Site 1119, New Zealand: climatic modulation of southwest Pacific intermediate water flows since 3.9 Ma. Geology, 32(11):1005–1008. doi:10.1130/G20783.1
Carter, R.M., and Gammon, P., 2004. New Zealand maritime glaciation: millennial-scale southern climate change since 3.9 Ma. Science, 304(5677):1659–1662. doi:10.1126/science.
1093726
Carter, R.M., Gammon, P.R., and Millwood, L., 2004b. Glacial–interglacial (MIS 1–10) migrations
of the subtropical front across ODP Site 1119, Canterbury Bight, Southwest Pacific Ocean. Mar. Geol., 205(1–4):29–58. doi:10.1016/S0025-3227(04)00017-9
Carter, R.M., and Landis, C.A., 1972. Correlative Oligocene unconformities in southern Australasia.
Nature (London), Phys. Sci., 237:12–13.
Carter, R.M., McCave, I.N., and Carter, L., 2004c. Leg 181 synthesis: fronts, flows, drifts, volcanoes,
and the evolution of the southwestern gateway to the Pacific Ocean, eastern New Zealand. In Richter, C. (Ed.), Proc. ODP, Sci. Results, 181: College Station, TX (Ocean Drilling
Program), 1–111. doi:10.2973/odp.proc.sr.181.210.2004
Carter, R.M., and Norris, R.J., 1976. Cainozoic history of southern New Zealand: an accord between geological observations and plate-tectonic predictions. Earth Planet. Sci. Lett.,31(1):85–94. doi:10.1016/0012-821X(76)90099-6
Chiswell, S.M., 1996. Variability in the Southland Current, New Zealand. N. Z. J. Mar. Freshwater
Res., 30:1–17. http://www.royalsociety.org.nz/Site/publish/Journals/nzjmfr/1996/100.aspx
Christie-Blick, N., 1991. Onlap, offlap, and the origin of unconformity-bounded depositional sequences. Mar. Geol., 97(1–2):35–56. doi:10.1016/0025-3227(91)90018-Y
Christie-Blick, N., Austin, J.A., Jr., and Shipboard Scientific Party, 1998. Introduction: Oligocene
to Pleistocene eustatic change at the New Jersey continental margin—a test of sequence stratigraphy. In Austin, J.A., Jr., Christie-Blick, N., Malone, M.J., et al., Proc. ODP, Init. Repts., 174A: College Station, TX (Ocean Drilling Program), 5–16. doi:10.2973/odp.proc.ir.174A.101.1998
Christie-Blick, N., and Driscoll, N.W., 1995. Sequence stratigraphy. Annu. Rev. Earth Planet. Sci., 23(1):451–478. doi:10.1146/annurev.ea.23.050195.002315
Christie-Blick, N., Mountain, G.S., and Miller, K.G., 1990. Seismic stratigraphic record of sea-level change. In National Research Council (Ed.), Sea-level Change: Washington, DC (National Academy Press), 116–140.Cloetingh, S., McQueen, H., and Lambeck, K., 1985. On a tectonic mechanism for regional sealevel variations. Earth Planet. Sci. Lett., 75(2–3):157–166. doi:10.1016/0012-821X(85)90098-6
Coombs, D.C.R., Kawach, Y., Landis, C.A., McDonough, W.F., and Reay, A., 1986, Cenozoic volcanism in north, east, and central Otago. In Smith, I.E.M. (Ed.), Late Cenozoic Volcanism
in New Zealand. Bull—R. Soc. N. Z., 23:278-312.
COSOD II, 1987. Report of the 2nd Conference on Scientific Ocean Drilling: Washington/Strasbourg
(JOIDES/European Sci. Found.).
Dewey, J.F., and Pitman, W.C., 1998. Sea level changes: mechansims, magnitudes and rates. In Pindell, J.L., and Drake, C.L. (Eds.), Paleogeographic Evolution and Nonglacial Eustasy, Northern South America. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 58:1–16.
Eberli, G., Swart, P., and Malone, M., 1996. ODP Prelim. Rept., 166. doi:10.2973/odp.pr.166.1996
Expedition 313 Scientists, 2010. New Jersey Shallow Shelf: shallow-water drilling of the New Jersey continental shelf: global sea level and architecture of passive margin sediments. IODP Prel. Rept., 313. doi:10.2204/iodp.pr.313.2010
Field, B.D., and Browne, G.H., 1989. Cretaceous and Cenozoic Sedimentary Basins and Geological Evolution of Canterbury Region, South Island, New Zealand. N. Z. Geol. Surv., Basin Stud., 2.
Fleming, C.A., 1962. New Zealand biogeography: a paleontologist’s approach. Tuatara, 10:53–108.
Fulthorpe, C.S., Miller, K.G., Droxler, A.W., Hesselbo, S.P., Camoin, G.F., and Kominz, M.A., 2008. Drilling to decipher long-term sea-level changes and effects—a joint consortium for Ocean Leadership, ICDP, IODP, DOSECC, and Chevron workshop. Sci. Drill., 6:19–28. doi:10.2204/iodp.sd.6.02.2008
Fulthorpe, C.S., and Carter, R.M., 1989. Test of seismic sequence methodology on a Southern Hemisphere passive margin: the Canterbury Basin, New Zealand. Mar. Pet. Geol.,6(4):348–359. doi:10.1016/0264-8172(89)90031-7
Fulthorpe, C.S., and Carter, R.M., 1991. Continental-shelf progradation by sediment-drift accretion. Geol. Soc. Am. Bull., 103(2):300–309. doi:10.1130/0016-7606(1991)103<0300:CSPBSD>2.3.CO;2
Fulthorpe, C.S., Carter, R.M., Miller, K.G., and Wilson, J., 1996. Marshall paraconformity: a mid-Oligocene record of inception of the Antarctic Circumpolar Current and coeval glacio-
eustatic lowstand? Mar. Pet. Geol., 13(1):61–77. doi:10.1016/0264-8172(95)00033-X
Haq, B.U., Hardenbol, J., and Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235(4793):1156–1167. doi:10.1126/science.235.4793.1156
Hawkes, P.W., and Mound, D.G., 1984. Clipper-1 geological completion report. N. Z. Geol. Surv. Open-File Rep., 1036.
Hoernle, K., White, J.D.L., van den Bogaard, P., Hauff, F., Coombs, D.S., Werner, R., Timm, C., Garbe-Schönberg, D., Reay, A., and Cooper, A.F., 2006. Cenozoic intraplate volcanism on New Zealand: upwelling induced by lithospheric removal. Earth Planet. Sci. Lett., 248(1–2):350–367. doi:10.1016/j.epsl.2006.06.001
Kamp, P.J.J., 1987. Age and origin of the New Zealand orocline in relation to alpine fault movement. J. Geol. Soc. (London, U. K.), 144(4):641–652. doi:10.1144/gsjgs.144.4.0641
Karner, G.D., 1986. Effects of lithospheric in-plane stress on sedimentary basin stratigraphy. Tectonics, 5(4):573–588. doi:10.1029/TC005i004p00573Karner, G.D., Driscoll, N.W., and Weissel, J.K., 1993. Reponse of the lithosphere to in-plane force variations. Earth Planet. Sci. Lett., 114(4):397–416. doi:10.1016/0012-821X(93)90072-H
Kennett, J.P., and von der Borch, C.C., 1986. Southwest Pacific Cenozoic paleoceanography. In Kennett, J.P., von der Borch, C.C., et al., Init. Repts. DSDP, 90: Washington, DC (U.S. Govt. Printing Office), 1493–1517. doi:10.2973/dsdp.proc.90.148.1986
King, P.R., 2000. Tectonic reconstructions of New Zealand: 40 Ma to the present. N. Z. J. Geol. Geophys., 43:611–638.
Kominz, M.A., Miller, K.G., and Browning, J.V., 1998. Long-term and short-term global Cenozoic
sea-level estimates. Geology, 26(4):311–314. doi:10.1130/0091-7613(1998)026<0311:LTASTG>2.3.CO;2
Kominz, M.A., and Pekar, S.F., 2001. Oligocene eustasy from two-dimensional sequence stratigraphic
backstripping. Geol. Soc. Am. Bull., 113(3):291–304. doi:10.1130/0016-7606(2001)113<0291:OEFTDS>2.0.CO;2
Lavier, L.L., Steckler, M.S., and Brigaud, F., 2000. An improved method for reconstructing the stratigraphy and bathymetry of continental margins: application to the Cenozoic tectonic
and sedimentary history of Congo margin. AAPG Bull., 78:923–939.
Lavier, L.L., Steckler, M.S., and Brigaud, F., 2001. Climatic and tectonic control on the Cenozoic
evolution of the West African margin. Mar. Geol., 178(1–4):63–80. doi:10.1016/S0025-3227(01)00175-X
Lewis, D.W., 1992. Anatomy of an unconformity on mid-Oligocene Amuri limestone, Canterbury,
New Zealand. N .Z. J. Geol. Geophys., 35(4):463–475.
Loutit, T.S. (Ed.), 1992. JOIDES Sea Level Working Group (SLWG) Report: Woods Hole, MA (Woods Hole Oceanographic Institute).
Lu, H., and Fulthorpe, C.S., 2004. Controls on sequence stratigraphy of a middle Miocene–Holocene, current-swept, passive margin: offshore Canterbury Basin, New Zealand. Geol. Soc. Am. Bull., 116(11):1345–1366. doi:10.1130/B2525401.1
Lu, H., Fulthorpe, C.S., and Mann, P., 2003. Three-dimensional architecture of shelf-building sediment drifts in the offshore Canterbury Basin, New Zealand. Mar. Geol., 193(1–2):19–47. doi:10.1016/S0025-3227(02)00612-6
Lu, H., Fulthorpe, C.S., Mann, P., and Kominz, M., 2005. Miocene–Recent tectonic and climate
controls on sediment supply and sequence stratigraphy: Canterbury Basin, New Zealand. Basin Res., 17(2):311–328.
McGonigal, K., and Di Stefano, A., 2002. Calcareous nannofossil biostratigraphy of the Eocene–Oligocene Transition, ODP Sites 1123 and 1124. In Richter, C. (Ed.), Proc. ODP, Sci. Results, 181: College Station, TX (Ocean Drilling Program), 1–22. doi:10.2973/odp.proc.sr.181.207.2002
McHugh, C.M.G., and Olson, H.C., 2002. Pleistocene chronology of continental margin sedimentation:
new insights into traditional models, New Jersey. Mar. Geol., 186(3–4):389–411. doi:10.1016/S0025-3227(02)00198-6
Miall, A.D, and Miall, C.E., 2001. Sequence stratigraphy as a scientific enterprise: the evolution
and persistence of conflicting paradigms. Earth Sci. Rev., 54(4):321–348. doi:10.1016/S0012-8252(00)00041-6
Miller, K.G., et al., 1994. Proc. ODP, Init. Repts., 150X: College Station, TX (Ocean Drilling Program).
doi:10.2973/odp.proc.ir.150X.1994Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugar-
man, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F., 2005. The Phanerozoic record of global sea-level change. Science, 310(5752):1293–1298. doi:10.1126/science.1116412
Miller, K.G., and Mountain, G.S., 1994. Global sea-level change and the New Jersey margin. In Mountain, G.S., Miller, K.G., Blum, P., et al., Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program), 11–20. doi:10.2973/odp.proc.ir.150.102.1994
Miller, K.G., Mountain, G.S., the Leg 150 Shipboard Party, and Members of the New Jersey Coastal Plain Drilling Project, 1996. Drilling and dating New Jersey Oligocene–Miocene sequences: ice volume, global sea level, and Exxon records. Science, 271(5252):1092–1095. doi:10.1126/science.271.5252.1092
Miller, K.G., Sugarman, P.J., Browning, J.V., et al., 1998. Proc. ODP, Init. Repts., 174AX: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.174AX.1998
Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96(B4):6829–6848. doi:10.1029/90JB02015
Milne, A.D., Simpson, C., and Threadgold, P., 1975. Resolution-1 well completion report. N. Z. Geol. Surv. Open-File Rep., 648.
Mitchum, R.M., Vail, P.R., and Thompson, S., 1977. Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphic analysis. InPayton, C.E. (Ed.), Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Mem., 26:53–62.
Molnar, P., Atwater, T., Mammerickx, J., and Smith, S., 1975. Magnetic anomalies, bathymetry
and the tectonic evolution of the South Pacific since the Late Cretaceous. Geophys. J. R. Astron. Soc., 40:383–420.
Morono, Y., Terada, T., Masui, N., and Inagaki, F., 2009. Discriminative detection and enumeration
of microbial life in marine subsurface sediments. ISME J., 3(5):503–511. doi:10.1038/ismej.2009.1
Morris, M., Stanton, B., and Neil, H., 2001. Subantarctic oceanography around New Zealand: preliminary results from an ongoing survey. N. Z. J. Mar. Freshwater Res., 35:499–519.
Mountain, G.S., Miller, K.G., Blum, P., et al., 1994. Proc. ODP, Init. Repts., 150: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.150.1994
Naish, T.R., Wehland, F., Wilson, G.S., Browne, G.H., Cook, R.A., Morgans, H.E.G., Rosenberg,
M., King, P.R., Smale, D., Nelson, C.S., Kamp, P.J.J., and Ricketts, B., 2005. An integrated
sequence stratigraphic, palaeonenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea level changes. J. R. Soc. N. Z., 35(1–2):151–196. http://www.royalsociety.org.nz/Site/publish/Journals/jrsnz/2005/006.aspx
Nelson, C.S., and Cooke, P.J., 2001. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic—a synthesis. N. Z. J. Geol. Geophys., 44:535–553. http://www.royalsociety.org.nz/Site/publish/Journals/nzjgg/2001/38.aspx
Norris, R.J., Carter, R.M., and Turnbull, I.M., 1978. Cainozoic sedimentation in basins adjacent
to a major continental transform boundary in southern New Zealand. J. Geol. Soc. (London, U. K.), 135(2):191–205. doi:10.1144/gsjgs.135.2.0191
Osterberg, E.C., 2006. Late Quaternary (marine isotope stages 6–1) seismic sequence stratigraphic
evolution of the Otago continental shelf, New Zealand. Mar. Geol., 229(3–4):159–178. doi:10.1016/j.margeo.2006.03.005Posamentier, H.W., Jervey, M.T., and Vail, P.R., 1988. Eustatic controls on clastic deposition, I.
Conceptual framework. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner, J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach.Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:109–124.
Posamentier, H.W., and Vail, P.R., 1988. Eustatic controls on clastic deposition, II: Sequence and systems tract models. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner, J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach.Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:125–154.
Reyes, A.G., 2007. Abandoned oil and gas wells: a reconnaissance study of an unconventional
geothermal resource. GNS Sci. Rep., 2007/23.
Reynolds, D.J., Steckler, M.S., and Coakley, B.J., 1991. The role of the sediment load in sequence stratigraphy: the influence of flexural isostasy and compaction. J. Geophys. Res., [Solid Earth], 96(B4):6931–6949. doi:10.1029/90JB01914
Saul, G., Naish, T.R., Abbott, S.T., and Carter, R.M., 1999. Sedimentary cyclicity in the marine Pliocene–Pleistocene of the Wanganui Basin (New Zealand): sequence stratigraphic motifs characteristic of the past 2.5 m.y. Geol. Soc. Am. Bull., 111(4):524–537. doi:10.1130/0016-7606(1999)111<0524:SCITMP>2.3.CO;2
Shipboard Scientific Party, 1999a. Leg 181 summary: southwest Pacific paleoceanography. InCarter, R.M., McCave, I.N., Richter, C., Carter, L., et al., Proc. ODP, Init. Repts., 181: College
Station, TX (Ocean Drilling Program), 1–80. doi:10.2973/odp.proc.ir.181.101.2000
Shipboard Scientific Party, 1999b. Site 1119: drift accretion on Canterbury Slope. In Carter, R.M., McCave, I.N., Richter, C., Carter, L., et al., Proc. ODP, Init. Repts., 181: College Station,
TX (Ocean Drilling Program), 1–112. doi:10.2973/odp.proc.ir.181.103.2000
Steckler, M.S., Mountain, G.S., Miller, K.G., and Christie-Blick, N., 1999. Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2-D backstripping. Mar. Geol., 154(1–4):399–420. doi:10.1016/S0025-3227(98)00126-1
Tippett, J.M., and Kamp, P.J.J., 1993a. Fission track analysis of the late Cenozoic vertical kinematics
of continental Pacific crust, South Island, New Zealand. J. Geophys. Res., [Solid Earth Planets], 98(9):16119–16148.
Tippett, J.M., and Kamp, P.J.J., 1993b. The role of faulting in rock uplift in the Southern Alps, New Zealand. N. Z. J. Geol. Geophys., 36(4):497–504.
Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N., and Perez-Cruz, G., 1991. The stratigraphic
signatures of tectonics, eustasy, and sedimentology—an overview. In Einsele, G., Ricken, W., and Seilacher, A. (Eds.), Cycles and Events in Stratigraphy: Berlin (Springer), 617–659.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Jr., Vail, P.R., Sarg, J.F., Loutit, T.S., and Hardenbol, J., 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In Wilgus, C.K., Hastings, B.S., Ross, C.A., Posamentier, H.W., Van Wagoner,
J., and Kendall, C.G.St.C. (Eds.), Sea-Level Changes: An Integrated Approach. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 42:39–45.
Walcott, R.I., 1998. Modes of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev. Geophys., 36(1):1–26. doi:10.1029/97RG03084
Ward, D.M., and Lewis, D.W., 1975. Paleoenvironmental implications of storm-scoured ichnofossiliferous
mid-Tertiary limestones, Waihao District, South Canterbury, New Zealand.
N. Z. J. Geol. Geophys., 18:881–908.
Watkins, J.S., and Mountain, G.S. (Eds.), 1990. Role of ODP Drilling in the Investigation of Global Changes in Sea Level [JOI/USSAC Workshop, El Paso, TX, 24–26 October 1988].Watters, W.A., 1978. Tertiary volcanism–Miocene. In Suggate, P.R., and Stevens, G.R. (Eds.), The Geology of New Zealand: Wellington (New Zealand Govt. Printer), 2:637–644.
Wellman, H.W., 1971. Age of the Alpine Fault, New Zealand. Proc Int. Geol. Congr, 22nd, 4:148–162.
Wilding, A., and Sweetman, I.A.D., 1971. Endeavour-1 petroleum report. N. Z. Geol. Surv. Open-File Rep., 303.
Wilson, I.R., 1985. Galleon-1 geological completion report. N. Z. Geol. Surv. Open-File Rep.,1146.
Type
report
File(s)
No Thumbnail Available
Name
Expedition_317_Scientists_317PR-6.pdf
Size
8.32 MB
Format
Adobe PDF
Checksum (MD5)
7577a5e628f0825d0983baf451f2545b