Repository logo
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • People
  • Organizations
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. Atmospheric horizontal resolution affects tropical climate variability in coupled models
 
  • Details
Options

Atmospheric horizontal resolution affects tropical climate variability in coupled models

Author(s)
Navarra, A. 
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia 
Gualdi, S. 
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia 
Masina, S. 
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia 
Behera, S. 
Frontier Research System FRCGC, Yokohama, Japan 
Luo, J.-J. 
Frontier Research System FRCGC, Yokohama, Japan 
Masson, S. 
Frontier Research System FRCGC, Yokohama, Japan 
Guilyardi, E. 
IPSL/LSCE, Gif-sur-Yvette, France 
Delecluse, P. 
IPSL/LSCE, Gif-sur-Yvette, France 
Yamagata, T. 
Frontier Research System FRCGC, Yokohama, Japan 
Language
English
Obiettivo Specifico
3.7. Dinamica del clima e dell'oceano
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Journal of Climate 
Issue/vol(year)
/21 (2008)
Publisher
American Meteorological Society
Pages (printed)
730-750
Issued date
April 2008
DOI
10.1175/2007JCLI1406.1
Alternative Location
http://ams.allenpress.com/perlserv/?request=res-loc&uri=urn%3Aap%3Apdf%3Adoi%3A10.1175%2F2007JCLI1406.1
URI
https://www.earth-prints.org/handle/2122/3824
Subjects
03. Hydrosphere::03.01. General::03.01.03. Global climate models 
Keywords
  • coupled models

  • tropical variability

  • ENSO system

Abstract
The effect of horizontal resolution on tropical variability is investigated within the
modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the
Frontier Research System. The horizontal resolutions T30 and T106 are investigated
in terms of the coupling characteristics, frequency and variability of the
tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally
beneficial even if it does not eliminate all the major systematic errors of the
coupled model. There is an excessive shift west of the cold tongue and ENSO variability,
and high resolution has also a somewhat negative impact to the variability
in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty
in the T30 model is moderated in the T106 as it shifts to longer time scale. At
high resolution new processes come into play, as the coupling of tropical instability
waves, the resolution of coastal flows at the Pacific Mexican coasts and improved
coastal forcing along the coast of South America. The delayed oscillator seems the
main mechanism that generates the interannual variability in both models, but the
models realize it in different ways. In the T30 model it is confined close to the
equator, involving relatively fast equatorial and near-equatorial modes, in the high
resolution, it involves a wider latitudinal region and slower waves. It is speculated
that the extent of the region that is involved in the interannual variability may be
linked to the time scale of the variability itself.
Sponsors
This research was partially supported
by the Italy–USA Cooperation Program of the
Italian Ministry of Environment and by the EU projects
ENSEMBLES and DYNAMITE.
References
Battisti, D. S., 1988: Dynamics and thermodynamics of a warming
event in a coupled tropical atmosphere–ocean model. J. Atmos.
Sci., 45, 2889–2919.
Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices
in a general circulation model. Tellus, 47A, 175–196.
Boville, B., 1991: Sensitivity of simulated climate to model resolution.
J. Climate, 4, 469–485.
Boyle, J., 1993: Sensitivity of dynamical quantities to horizontal
resolution for a climate simulation using the ECMWF (cycle
33) model. J. Climate, 6, 796–815.
Brankovic, C., and D. Gregory, 2001: Impact of horizontal resolution
on seasonal integrations. Climate Dyn., 18, 123–143.
Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and
temporal structure of tropical Pacific interannual variability
in 20th century coupled simulations. Ocean Modell., 15, 274–
298.
Chelton, D. B., 2005: The impact of SST specification on ECMWF
surface wind stress fields in the eastern tropical Pacific. J.
Climate, 18, 530–550.
——, and Coauthors, 2001: Observations of coupling between surface
wind stress and sea surface temperature in the eastern
tropical Pacific. J. Climate, 14, 1479–1498.
——, M. Schlax, M. H. Freilich, and R. Milliff, 2004: Satellite
measurements reveal persistent small-scale features in ocean
winds. Science, 303, 978–983.
Dewitte, B., C. Cibot, C. Périgaud, S.-I. An, and L. Terray, 2007:
Interaction between near-annual and ENSO modes in a
CGCM simulation: Role of the equatorial background mean
state. J. Climate, 20, 1035–1052.
Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber,
K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003:
High-resolution simulations of global climate, part 1: Present
climate. Climate Dyn., 21, 371–390.
Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing?
Science, 288, 1997–2002.
Gualdi, S., A. Navarra, and H. von Storch, 1997: Tropical intraseasonal
oscillation appearing in operational analyses and in a
family of general circulation models. J. Atmos. Sci., 54, 1185–
1202.
——, E. Guilyardi, P. Delecluse, S. Masina, and A. Navarra,
2003a: The role of the Indian Ocean in a coupled model.
Climate Dyn., 20, 567–582.
——, A. Navarra, E. Guilyardi, and P. Delecluse, 2003b: Assessment
of the tropical Indo-Pacific climate in the SINTEX
CGCM. Ann. Geophys., 46, 1–5.
——, A. Alessandri, and A. Navarra, 2005: Impact of atmospheric
horizontal resolution on El Niño Southern Oscillation forecasts.
Tellus, 57A, 357–374.
Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003:
Mechanism for ENSO phase change in a coupled GCM. J.
Climate, 16, 1141–1158.
——, and Coauthors, 2004: Representing El Niño in coupled
ocean–atmosphere GCMs: The dominant role of the atmospheric
component. J. Climate, 17, 4623–4629.
Hashizume, H., S.-P. Xie, W. T. Liu, and K. Takeuchi, 2001: Local
and remote atmospheric response to tropical instability
waves: A global view from space. J. Geophys. Res., 106,
10 173–10 186.
Jin, F.-F., 2001: Low-frequency modes of tropical ocean dynamics.
J. Climate, 14, 3874–3881.
Junge, M. M., R. Blender, K. Fraedrich, V. Gayler, U. Luksch,and F. Lunkeit, 2005: A world without Greenland: Impacts
on the Northern Hemisphere winter circulation in low- and
high-resolution models. Climate Dyn., 24, 297–307.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis
Project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kirtman, B., 1997: Oceanic Rossby wave dynamics and the ENSO
period in a coupled model. J. Climate, 10, 1690–1704.
Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis:
Monthly means CD-ROM and documentation. Bull.
Amer. Meteor. Soc., 82, 247–267.
Kobayashi, C., and M. Sugi, 2004: Impact of horizontal resolution
on the simulation of the Asian summer monsoon and tropical
cyclones in the JMA global model. Climate Dyn., 23, 165–176.
Liu, W. T., X. Xie, P. S. Polito, S.-P. Xie, and H. Hashizume, 2000:
Atmospheric manifestation of tropical instability waves observed
by QuikSCAT and Tropical Rain Measuring Mission.
Geophys. Res. Lett., 27, 2545–2548.
Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra,
and T. Yamagata, 2003: South Pacific origin of the
decadal ENSO-like variation as simulated by a coupled
GCM. Geophys. Res. Lett., 30, 2250–2258.
——, ——, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing
climatology bias in an ocean–atmosphere CGCM with
improved coupling physics. J. Climate, 18, 2344–2360.
Manabe, S., J. Smagorinsky, J. L. Holloway Jr., and H. M. Stone,
1970: Simulated climatology of a general circulation model
with a hydrologic cycle. III: Effects of increased horizontal
computational resolution. Mon. Wea. Rev., 98, 175–212.
Masina, S., N. Pinardi, and A. Navarra, 2001: A global ocean
temperature and altimeter data assimilation system for studies
of climate variability. Climate Dyn., 17, 687–700.
——, P. Di Pietro, and A. Navarra, 2004: Interannual-to-decadal
variability of the North Atlantic from an ocean data assimilation
system. Climate Dyn., 23, 531–546.
May, W., 2001: The impact of horizontal resolution on the simulation
of seasonal climate in the Atlantic/European area for
present and future times. Climate Res., 16, 203–223.
——, 2003: The Indian summer monsoon and its sensitivity to the
mean SSTs: Simulations with the ECHAM4 AGCM at T106
horizontal resolution. J. Meteor. Soc. Japan, 81, 57–83.
——, and E. Roeckner, 2001: A time-slice experiment with the
ECHAM4 AGCM at high resolution: The impact of horizontal
resolution on annual mean climate change. Climate Dyn.,
17, 407–420.
McCreary, J. P., H. S. Lee, and D. B. Enfield, 1989: The response
of the coastal ocean to strong offshore winds: With application
to circulations in the gulfs of Tehuantepec and Papagayo.
J. Mar. Res., 47, 81–109.
Navarra, A., 2003: Preface: The SINTEX Project. Ann. Geophys.,
46, V–IX.
——, and J. Tribbia, 2005: The coupled manifold. J. Atmos. Sci.,
62, 310–330.
Pope, V., and R. Stratton, 2002: The processes governing horizontal
resolution sensitivity in a climate model. Climate Dyn.,
19, 211–236.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003:
Global analyses of SST, sea ice, and night marine air temperature
since the late nineteenth century. J. Geophys. Res.,
108, 4407, doi:10.1029/2002JD002670.
Roeckner, E., and Coauthors, 1996: The atmospheric general circulation
model ECHAM-4: Model description and simulation
of present-day climate. Max-Planck-Institut für Meteorologie
Rep. 218, 90 pp.
Schopf, P., and M. J. Suarez, 1990: Ocean wave dynamics and the
time scale of ENSO. J. Phys. Oceanogr., 20, 629–645.
Sperber, K., S. Hameed, G. L. Potter, and J. S. Boyle, 1994: Simulation
of the northern summer monsoon in the ECMWF
model: Sensitivity to horizontal resolution. Mon. Wea. Rev.,
122, 2461–2481.
Stephenson, D. B., F. Chauvin, and J.-F. Royer, 1998: Simulation
of the Asian summer monsoon and its dependence on model
horizontal resolution. J. Meteor. Soc. Japan, 76, 237–265.
Stratton, R. A., 1999: A high resolution AMIP integration using
the Hadley Centre model HadAM2b. Climate Dyn., 15, 9–28.
Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator
for ENSO. J. Atmos. Sci., 45, 3283–3287.
Tibaldi, S., T. N. Palmer, C. Brankovic, and U. Cubasch, 1990:
Extended-range predictions with ECMWF models: Influence
of horizontal resolution on systematic error and forecast skill.
Quart. J. Roy. Meteor. Soc., 116, 835–866.
Welch, P., 1967: The use of fast Fourier transform for the estimation
of power spectra: A method based on time averaging
over short, modified periodograms. IEEE Trans. Audio Electroacoust.,
15, 70–73.
Wild, M., P. Calanca, S. C. Scherrer, and A. Ohmura, 2003: Effects
of polar ice sheets on global sea level in high-resolution.
J. Geophys. Res., 108, 4165, doi:10.1029/2002JD002451.
Williamson, D. L., J. T. Kiehl, and J. J. Hack, 1995: Climate sensitivity
of the NCAR Community Climate Model (CCM2) to
horizontal resolution. Climate Dyn., 11, 377–397.
Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO.
J. Climate, 17, 2526–2540.
Type
article
File(s)
No Thumbnail Available
Request a copy
Name

Atm_Hor_Res.pdf

Description
Main article
Size

5.17 MB

Format

Adobe PDF

Checksum (MD5)

44c137fcd865ac338f121bfd56c30f4e

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback