Options
A Holocene paleosecular variation record from the northwestern Barents Sea continental margin
Author(s)
Language
English
Obiettivo Specifico
2.2. Laboratorio di paleomagnetismo
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
11/12 (2011)
Publisher
American Geophysical Union
Pages (printed)
Q11Z33
Issued date
November 1, 2011
Abstract
A high‐resolution paleomagnetic and rock magnetic study has been carried out on sediment cores collected
in glaciomarine silty‐clay sequences from the continental shelf and slope of the southern Storfjorden
trough‐mouth fan, on the northwestern Barents Sea continental margin. The Storfjorden sedimentary
system was investigated during the SVAIS and EGLACOM cruises, when 10 gravity cores, with a variable
length from 1.03 m to 6.41 m, were retrieved. Accelerator mass spectrometry (AMS) 14C analyses on
24 samples indicate that the cores span a time interval that includes the Holocene, the last deglaciation phase
and in some cores the last glacial maximum. The sediments carry a well‐defined characteristic remanent
magnetization and have a valuable potential to reconstruct the paleosecular variation (PSV) of the geomagnetic
field, including relative paleointensity (RPI) variations. The paleomagnetic data allow reconstruction
of past dynamics and amplitude of the geomagnetic field variations at high northern latitudes (75°–76° N).
At the same time, the rock magnetic and paleomagnetic data allow a high‐resolution correlation of the
sedimentary sequences and a refinement of their preliminary age models. The Holocene PSV and RPI
records appear particularly sound, since they are consistent between cores and they can be correlated to
the closest regional stacking curves (UK PSV, FENNOSTACK and FENNORPIS) and global geomagnetic
model for the last 7 ka (CALS7k.2). The computed amplitude of secular variation is lower than that
outlined by some geomagnetic field models, suggesting that it has been almost independent from latitude
during the Holocene.
in glaciomarine silty‐clay sequences from the continental shelf and slope of the southern Storfjorden
trough‐mouth fan, on the northwestern Barents Sea continental margin. The Storfjorden sedimentary
system was investigated during the SVAIS and EGLACOM cruises, when 10 gravity cores, with a variable
length from 1.03 m to 6.41 m, were retrieved. Accelerator mass spectrometry (AMS) 14C analyses on
24 samples indicate that the cores span a time interval that includes the Holocene, the last deglaciation phase
and in some cores the last glacial maximum. The sediments carry a well‐defined characteristic remanent
magnetization and have a valuable potential to reconstruct the paleosecular variation (PSV) of the geomagnetic
field, including relative paleointensity (RPI) variations. The paleomagnetic data allow reconstruction
of past dynamics and amplitude of the geomagnetic field variations at high northern latitudes (75°–76° N).
At the same time, the rock magnetic and paleomagnetic data allow a high‐resolution correlation of the
sedimentary sequences and a refinement of their preliminary age models. The Holocene PSV and RPI
records appear particularly sound, since they are consistent between cores and they can be correlated to
the closest regional stacking curves (UK PSV, FENNOSTACK and FENNORPIS) and global geomagnetic
model for the last 7 ka (CALS7k.2). The computed amplitude of secular variation is lower than that
outlined by some geomagnetic field models, suggesting that it has been almost independent from latitude
during the Holocene.
References
Barletta, F., G. St‐Onge, J. E. T. Channell, A. Rochon,
L. Polyak, and D. Darby (2008), High‐resolution paleomagnetic
secular variation and relative paleointensity records from
the western Canadian Arctic: Implication for the Holocene
stratigraphy and geomagnetic field behavior, Can. J. Earth
Sci., 45, 1265–1281, doi:10.1139/E08-039.
Barletta, F., G. St‐Onge, J. E. T. Channell, and A. Rochon
(2010a), Dating of Holocene western Canadian Arctic sediments
by matching paleomagnetic secular variation to a geomagnetic
field model, Quat. Sci. Rev., 29, 2315–2324,
doi:10.1016/j.quascirev.2010.05.035.
Barletta, F., G. St‐Onge, J. S. Stoner, P. Lajeunesse, and
J. Locat (2010b), A high‐resolution Holocene paleomagnetic
secular variation and relative paleointensity stack from eastern
Canada, Earth Planet. Sci. Lett., 298, 162–174, doi:10.1016/j.
epsl.2010.07.038.
Bloxham, J., and D. Gubbins (1985), The secular variation of
Earth’s magnetic field, Nature, 317, 777–781, doi:10.1038/
317777a0.
Brachfeld, S. A., G. D. Acton, Y. Guyodo, and S. K. Banerjee
(2000), High‐resolution paleomagnetic records from Holocene
sediments from the Palmer Deep, western Antarctic
Peninsula, Earth Planet. Sci. Lett., 181, 429–441,
doi:10.1016/S0012-821X(00)00211-9.
Brachfeld, S. A., E. W. Domack, C. Kissel, C. Laj,
A. Leventer, S. E. Ishman, I. M. Gilbert, A. Camerlenghi,
and L. B. Eglinton (2003), Holocene history of the Larsen‐A
Ice Shelf constrained by geomagnetic paleointensity dating,
Geology, 31, 749–752, doi:10.1130/G19643.1.
Brachfeld, S. A., C. Kissel, C. Laj, and A. Mazaud (2004),
Viscous behavior of u‐channels during acquisition and
demagnetization of remanences: Implications for paleomagnetic
and rock‐magnetic investigations, Phys. Earth Planet.
Inter., 145, 1–8, doi:10.1016/j.pepi.2003.12.011.
Chadima, M., and F. Hrouda (2006), Remasoft 3.0–A userfriendly
paleomagnetic data browser and analyzer, Trav.
Geophys., XXVII, 20–21.
Channell, J. E. T., and C. Xuan (2009), Self‐reversal and
apparent magnetic excursions in Arctic sediments, Earth
Planet. Sci. Lett., 284, 124–131, doi:10.1016/j.epsl.2009.
04.020.
Channell, J. E. T., J. S. Stoner, D. A. Hodell, and C. D. Charles
(2000), Geomagnetic paleointensity for the last 100 kyr from
the sub‐antarctic South Atlantic: A tool for inter‐hemispheric
correlation, Earth Planet. Sci. Lett., 175, 145–160,
doi:10.1016/S0012-821X(99)00285-X.
Constable, C. G., and R. L. Parker (1988), Statistics of the geomagnetic
secular variation for the past 5 m.y, J. Geophys.
Res., 93, 11,569–11,581, doi:10.1029/JB093iB10p11569.
Creer, K. M., R. Thompson, L. Molyneux, and F. J. H.
Mackereth (1972), Geomagnetic secular variation recorded
in the stable magnetic remanence of recent sediments, Earth
Planet. Sci. Lett., 14, 115–127, doi:10.1016/0012-821X(72)
90090-8.
Donadini, F., M. Korte, and C. G. Constable (2009), Geomagnetic
field for 0–3 ka: 1. New data sets for global modeling,
Geochem. Geophys. Geosyst., 10, Q06007, doi:10.1029/
2008GC002295.
Donadini, F., M. Korte, and C. G. Constable (2010), Millennial
variations of the geomagnetic Field: From data recovery
to field reconstruction, Space Sci. Rev., 155, 219–246,
doi:10.1007/s11214-010-9662-y.
Fisher, R. A. (1953), Dispersion on a sphere, Proc. R. Soc.
London, Ser. A, 217, 295–305, doi:10.1098/rspa.1953.0064.
Hagstrum, J. T., and D. E. Champion (2002), A Holocene
paleosecular variation record from 14C‐dated volcanic rocks
in western North America, J. Geophys. Res., 107(B1), 2025,
doi:10.1029/2001JB000524.
Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen
(2002), Small‐scale structure of the geodynamo inferred
from Oersted and Magsat satellite data, Nature, 416,
620–623, doi:10.1038/416620a.
Jakobsson, M., R. Macnab, L. Mayer, R. Anderson,
M. Edwards, J. Hatzky, H.‐W. Schenke, and P. Johnson
(2008), An improved bathymetric portrayal of the Arctic
Ocean: Implications for ocean modeling and geological, geophysical
and oceanographic analyses, Geophys. Res. Lett.,
35, L07602, doi:10.1029/2008GL033520.
Johnson, C. L., et al. (2008), Recent investigations of the
0–5 Ma geomagnetic field recorded by lava flows, Geochem.
Geophys. Geosyst., 9, Q04032, doi:10.1029/2007GC001696.
King, J. W., S. K. Banerjee, J. Marvin, and Ö. Özdemir (1982),
A comparison of different magnetic methods for determining
the relative grain size of magnetite in natural materials: Some
results from lake sediments, Earth Planet. Sci. Lett., 59,
404–419, doi:10.1016/0012-821X(82)90142-X.
King, J. W., S. K. Banerjee, and J. Marvin (1983), A new
rock‐magnetic approach to selecting sediments for geomagnetic
paleointensity for the last 4000 years, J. Geophys. Res.,
88(B7), 5911–5921, doi:10.1029/JB088iB07p05911.
Kirschvink, J. L. (1980), The least‐squares line and plane and
the analysis of paleomagnetic data, Geophys. J. R. Astron.
Soc., 62, 699–718.
Korte, M., and C. G. Constable (2005), The geomagnetic
dipole moment over the last 7000 years—New results from
a global model, Earth Planet. Sci. Lett., 236, 348–358,
doi:10.1016/j.epsl.2004.12.031.
Korte, M., and M. Mandea (2008), Magnetic poles and dipole
tilt variation over the past decades to millennia, Earth Planets
Space, 60, 937–948.
Korte, M., A. Genevey, C. G. Constable, U. Frank, and
E. Schnepp (2005), Continuous geomagnetic field models
for the past 7 millennia: 1. A new global data compilation,
Geochem. Geophys. Geosyst., 6, Q02H15, doi:10.1029/
2004GC000800.
Korte, M., F. Donadini, and C. Constable (2009), Geomagnetic
field for 0–3 ka: 2. A new series of time‐varying global
models, Geochem. Geophys. Geosyst., 10, Q06008,
doi:10.1029/2008GC002297.
Lisé‐Pronovost, A., G. St‐Onge, S. Brachfeld, F. Barletta, and
D. Darby (2009), Paleomagnetic constraints on the Holocene
stratigraphy of the Arctic Alaskan margin, Global Planet.
Change, 68(1–2), 85–99.
Macrì, P., L. Sagnotti, J. Dinarès‐Turell, and A. Caburlotto
(2005), A composite record of Late Pleistocene relative
geomagnetic paleointensity from the Wilkes Land Basin
(Antarctica), Phys. Earth Planet. Inter., 151, 223–242,
doi:10.1016/j.pepi.2005.03.004.
Macrì, P., L. Sagnotti, and R. G. Lucchi (2006), A stacked
record of relative geomagnetic paleointensity for the past
270 kyr from the western continental rise of the Antarctic
Peninsula, Earth Planet. Sci. Lett., 252, 162–179, doi:10.1016/
j.epsl.2006.09.037.
Macrì, P., L. Sagnotti, J. Dinarès‐Turell, and A. Caburlotto
(2010), Relative geomagnetic paleointensity, excursions
and the Brunhes‐Matuyama precursor as recorded in a sediment core from Wilkes Land Basin (Antarctica), Phys. Earth
Planet. Inter., 179, 72–86, doi:10.1016/j.pepi.2009.12.002.
Maher, B. A. (1988), Magnetic properties of some synthetic
sub‐micron magnetites, Geophys. J. R. Astron. Soc., 94,
83–96.
McElhinny, M. W., and P. L. McFadden (1997), Palaeosecular
variation over the past 5 Myr based on a new generalized
database, Geophys. J. Int., 131, 240–252, doi:10.1111/
j.1365-246X.1997.tb01219.x.
McFadden, P. L., R. T. Merrill, and M. W. McElhinny (1988),
Dipole/quadrupole family modelling of paleosecular variation,
J. Geophys. Res., 93, 11,583–11,588, doi:10.1029/
JB093iB10p11583.
Merrill, R. T., M. W. McElhinny, and P. L. McFadden (1996),
The Magnetic Field of the Earth, 531 pp., Academic, San
Diego, Calif.
Meynadier, L., J.‐P. Valet, R. Weeks, N. J. Shackleton, and
V. L. Hagee (1992), Relative geomagnetic intensity of the
field during the last 140 ka, Earth Planet. Sci. Lett., 114,
39–57, doi:10.1016/0012-821X(92)90150-T.
Nilsson, A., I. Snowball, R. Muscheler, and C. B. Uvo (2010),
Holocene geocentric dipole tilt model constrained by sedimentary
paleomagnetic data, Geochem. Geophys. Geosyst.,
11, Q08018, doi:10.1029/2010GC003118.
Noel, M., and C. M. Batt (1990), A method for correcting geographically
separated remanence directions for the purpose
of archeomagnetic dating, Geophys. J. Int., 102, 753–756,
doi:10.1111/j.1365-246X.1990.tb04594.x.
Nowaczyk, N. R., and M. Antonow (1997), High resolution
magnetostratigraphy of four sediment cores from the
Greenland Sea–I. Identification of the Mono Lake excursion,
Laschamp and Biwa I/Jamaica geomagnetic polarity events,
Geophys. J. Int., 131, 310–324, doi:10.1111/j.1365-246X.
1997.tb01224.x.
Nowaczyk, N., and T. Frederichs (1999), Geomagnetic events
and relative paleointensity variations during the last 300 ka
as recorded in Kolbeinsey Ridge sediments, Iceland Sea,
indication for a strongly variable geomagnetic field, Int. J.
Earth Sci., 88, 116–131, doi:10.1007/s005310050250.
Ohno, M., and Y. Hamano (1993), Global analysis of the geomagnetic
field; time variation of the dipole moment and the
geomagnetic pole in the Holocene, J. Geomagn. Geoelectr.,
45, 1455–1466, doi:10.5636/jgg.45.1455.
Olson, P., and J. Aurnou (1999), A polar vortex in the Earth’s
core, Nature, 402, 170–173, doi:10.1038/46017.
Reimer, P. J., et al. (2009), IntCal09 and Marine09 radiocarbon
age calibration curves, 0–50,000 years cal BP, Radiocarbon,
51(4), 1111–1150.
Roberts, A. P. (2006), High‐resolution magnetic analysis of
sediment cores: Strengths, limitations and strategies for maximizing
the value of long‐core magnetic data, Phys. Earth
Planet. Inter., 156, 162–178, doi:10.1016/j.pepi.2005.
03.021.
Ryan, W. B. F., et al. (2009), Global Multi‐Resolution Topography
synthesis, Geochem. Geophys. Geosyst., 10, Q03014,
doi:10.1029/2008GC002332.
Sagnotti, L., P. Macrí, A. Camerlenghi, and M. Rebesco
(2001), Environmental magnetism of Antarctic Late Pleistocene
sediments and interhemispheric correlation of climatic
events, Earth Planet. Sci. Lett., 192, 65–80, doi:10.1016/
S0012-821X(01)00438-1.
Sagnotti, L., P. Rochette, M. Jackson, F. Vadeboin, J. Dinarès‐
Turell, and A. Winkler (2003), “Mag‐Net” Science Team,
Inter‐laboratory calibration of low field and anhysteretic
susceptibility measurements, Phys. Earth Planet. Inter.,
138, 25–38, doi:10.1016/S0031-9201(03)00063-3.
Sigmond, E. M. O. (1992), Bedrock map of Norway and adjacent
ocean areas, scale 1:3 million, Geol. Surv. of Norway,
Trondheim.
Snowball, I., L. Zillén, A. Ojala, T. Saarinen, and P. Sandgren
(2007), FENNOSTACK and FENNORPIS: Varve dated
Holocene paleomagnetic secular variation and relative
palaeointensity stacks for Fennoscandia, Earth Planet. Sci.
Lett., 255, 106–116, doi:10.1016/j.epsl.2006.12.009.
Sreenivasan, B., and C. A. Jones (2005), Structure and
dynamics of the polar vortex in the Earth’s core, Geophys.
Res. Lett., 32, L20301, doi:10.1029/2005GL023841.
Sreenivasan, B., and C. A. Jones (2006), Azimuthal winds,
convection and dynamo action in the polar region of the
planetary cores, Geophys. Astrophys. Fluid Dyn., 100,
319–339, doi:10.1080/03091920600807864.
St‐Onge, G., J. S. Stoner, and C. Hillaire‐Marcel (2003),
Holocene paleomagnetic records from the St. Lawrence
Estuary, eastern Canada: Centennial to millennial‐scale geomagnetic
modulation of cosmogenic isotopes, Earth Planet.
Sci. Lett., 209, 113–130, doi:10.1016/S0012-821X(03)
00079-7.
Stoner, J. S., J. E. T. Channell, D. A. Hodell, and C. D. Charles
(2003), A ∼580 kyr paleomagnetic record from the sub‐
Antarctic South Atlantic (Ocean Drlling Program Site 1089),
J. Geophys. Res., 108(B5), 2244, doi:10.1029/2001JB001390.
Stuiver, M., and P. J. Reimer (1993), Extended 14C data
base and revised Calib 3.0 14C age calibration program,
Radiocarbon, 35, 215–230.
Tauxe, L. (1993), Sedimentary records of relative paleointensity
of the geomagnetic field: Theory and practice, Rev. Geophys.,
31, 319–354, doi:10.1029/93RG01771.
Tauxe, L., and D. Kent (2004), A simplified statistical model
for the geomagnetic field and the detection of shallow bias
in paleomagnetic inclinations: Was the ancient magnetic
field dipolar? in Timescales of the Internal Geomagnetic
Field, Geophys. Monogr. Ser., vol. 145, edited by J. E. T.
Channell et al., pp. 101–115, AGU, Washington, D. C.
Tauxe, L., and T. Yamazaki (2007), Paleointensities, in Treatise
on Geophysics, vol. 5, edited by G. Schubert, pp. 509–563,
Elsevier, Oxford, U. K., doi:10.1016/B978-044452748-
6.00098-5.
Thompson, R. (1973), Palaeolimnology and palaeomagnetism,
Nature, 242, 182–184, doi:10.1038/242182a0.
Thompson, R., and D. R. Barraclough (1982), Geomagnetic
secular variation based on Spherical harmonic and cross
validation analyses of historical and archaeomagnetic data,
J. Geomagn. Geoelectr., 34, 245–263, doi:10.5636/jgg.
34.245.
Turner, G. M., and R. Thompson (1981), Lake sediment record
of the geomagnetic secular variation in Britain during Holocene
times, Geophys. J., 65, 703–725, doi:10.1111/j.1365-
246X.1981.tb04879.x.
Turner, G. M., and R. Thompson (1982), Detransformation of
the British geomagnetic secular variation record for Holocene
times, Geophys. J., 70, 789–792.
Valet, J. P. (2003), Time Variations in geomagnetic intensity,
Rev. Geophys., 41(1), 1004, doi:10.1029/2001RG000104.
Valet, J.‐P., and L. Meynadier (1998), A comparison of different
techniques for relative paleointensity, Geophys. Res.
Lett., 25, 89–92, doi:10.1029/97GL03489.
Vandamme, D. (1994), A new method to determine paleosecular
variation, Phys. Earth Planet. Inter., 85, 131–142,
doi:10.1016/0031-9201(94)90012-4. Verosub, K. L. (1977), Depositional and post‐depositional
processes in the magnetization of sediments, Rev. Geophys.
Space Phys., 15, 129–143, doi:10.1029/RG015i002p00129.
Xuan, C., and J. E. T. Channell (2010), Origin of apparent
magnetic excursions in deep‐sea sediments from the
Mendeleev‐Alpha Ridge, Arctic Ocean, Geochem. Geophys.
Geosyst., 11, Q02003, doi:10.1029/2009GC002879.
Zijderveld, J. D. A. (1967), A. C. demagnetization of rocks:
Analysis of results, in Methods in Palaeomagnetism, edited
by D. W. Collinson, K. M. Creer, and S. K. Runcorn,
pp. 254–286, Elsevier, Amsterdam.
L. Polyak, and D. Darby (2008), High‐resolution paleomagnetic
secular variation and relative paleointensity records from
the western Canadian Arctic: Implication for the Holocene
stratigraphy and geomagnetic field behavior, Can. J. Earth
Sci., 45, 1265–1281, doi:10.1139/E08-039.
Barletta, F., G. St‐Onge, J. E. T. Channell, and A. Rochon
(2010a), Dating of Holocene western Canadian Arctic sediments
by matching paleomagnetic secular variation to a geomagnetic
field model, Quat. Sci. Rev., 29, 2315–2324,
doi:10.1016/j.quascirev.2010.05.035.
Barletta, F., G. St‐Onge, J. S. Stoner, P. Lajeunesse, and
J. Locat (2010b), A high‐resolution Holocene paleomagnetic
secular variation and relative paleointensity stack from eastern
Canada, Earth Planet. Sci. Lett., 298, 162–174, doi:10.1016/j.
epsl.2010.07.038.
Bloxham, J., and D. Gubbins (1985), The secular variation of
Earth’s magnetic field, Nature, 317, 777–781, doi:10.1038/
317777a0.
Brachfeld, S. A., G. D. Acton, Y. Guyodo, and S. K. Banerjee
(2000), High‐resolution paleomagnetic records from Holocene
sediments from the Palmer Deep, western Antarctic
Peninsula, Earth Planet. Sci. Lett., 181, 429–441,
doi:10.1016/S0012-821X(00)00211-9.
Brachfeld, S. A., E. W. Domack, C. Kissel, C. Laj,
A. Leventer, S. E. Ishman, I. M. Gilbert, A. Camerlenghi,
and L. B. Eglinton (2003), Holocene history of the Larsen‐A
Ice Shelf constrained by geomagnetic paleointensity dating,
Geology, 31, 749–752, doi:10.1130/G19643.1.
Brachfeld, S. A., C. Kissel, C. Laj, and A. Mazaud (2004),
Viscous behavior of u‐channels during acquisition and
demagnetization of remanences: Implications for paleomagnetic
and rock‐magnetic investigations, Phys. Earth Planet.
Inter., 145, 1–8, doi:10.1016/j.pepi.2003.12.011.
Chadima, M., and F. Hrouda (2006), Remasoft 3.0–A userfriendly
paleomagnetic data browser and analyzer, Trav.
Geophys., XXVII, 20–21.
Channell, J. E. T., and C. Xuan (2009), Self‐reversal and
apparent magnetic excursions in Arctic sediments, Earth
Planet. Sci. Lett., 284, 124–131, doi:10.1016/j.epsl.2009.
04.020.
Channell, J. E. T., J. S. Stoner, D. A. Hodell, and C. D. Charles
(2000), Geomagnetic paleointensity for the last 100 kyr from
the sub‐antarctic South Atlantic: A tool for inter‐hemispheric
correlation, Earth Planet. Sci. Lett., 175, 145–160,
doi:10.1016/S0012-821X(99)00285-X.
Constable, C. G., and R. L. Parker (1988), Statistics of the geomagnetic
secular variation for the past 5 m.y, J. Geophys.
Res., 93, 11,569–11,581, doi:10.1029/JB093iB10p11569.
Creer, K. M., R. Thompson, L. Molyneux, and F. J. H.
Mackereth (1972), Geomagnetic secular variation recorded
in the stable magnetic remanence of recent sediments, Earth
Planet. Sci. Lett., 14, 115–127, doi:10.1016/0012-821X(72)
90090-8.
Donadini, F., M. Korte, and C. G. Constable (2009), Geomagnetic
field for 0–3 ka: 1. New data sets for global modeling,
Geochem. Geophys. Geosyst., 10, Q06007, doi:10.1029/
2008GC002295.
Donadini, F., M. Korte, and C. G. Constable (2010), Millennial
variations of the geomagnetic Field: From data recovery
to field reconstruction, Space Sci. Rev., 155, 219–246,
doi:10.1007/s11214-010-9662-y.
Fisher, R. A. (1953), Dispersion on a sphere, Proc. R. Soc.
London, Ser. A, 217, 295–305, doi:10.1098/rspa.1953.0064.
Hagstrum, J. T., and D. E. Champion (2002), A Holocene
paleosecular variation record from 14C‐dated volcanic rocks
in western North America, J. Geophys. Res., 107(B1), 2025,
doi:10.1029/2001JB000524.
Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen
(2002), Small‐scale structure of the geodynamo inferred
from Oersted and Magsat satellite data, Nature, 416,
620–623, doi:10.1038/416620a.
Jakobsson, M., R. Macnab, L. Mayer, R. Anderson,
M. Edwards, J. Hatzky, H.‐W. Schenke, and P. Johnson
(2008), An improved bathymetric portrayal of the Arctic
Ocean: Implications for ocean modeling and geological, geophysical
and oceanographic analyses, Geophys. Res. Lett.,
35, L07602, doi:10.1029/2008GL033520.
Johnson, C. L., et al. (2008), Recent investigations of the
0–5 Ma geomagnetic field recorded by lava flows, Geochem.
Geophys. Geosyst., 9, Q04032, doi:10.1029/2007GC001696.
King, J. W., S. K. Banerjee, J. Marvin, and Ö. Özdemir (1982),
A comparison of different magnetic methods for determining
the relative grain size of magnetite in natural materials: Some
results from lake sediments, Earth Planet. Sci. Lett., 59,
404–419, doi:10.1016/0012-821X(82)90142-X.
King, J. W., S. K. Banerjee, and J. Marvin (1983), A new
rock‐magnetic approach to selecting sediments for geomagnetic
paleointensity for the last 4000 years, J. Geophys. Res.,
88(B7), 5911–5921, doi:10.1029/JB088iB07p05911.
Kirschvink, J. L. (1980), The least‐squares line and plane and
the analysis of paleomagnetic data, Geophys. J. R. Astron.
Soc., 62, 699–718.
Korte, M., and C. G. Constable (2005), The geomagnetic
dipole moment over the last 7000 years—New results from
a global model, Earth Planet. Sci. Lett., 236, 348–358,
doi:10.1016/j.epsl.2004.12.031.
Korte, M., and M. Mandea (2008), Magnetic poles and dipole
tilt variation over the past decades to millennia, Earth Planets
Space, 60, 937–948.
Korte, M., A. Genevey, C. G. Constable, U. Frank, and
E. Schnepp (2005), Continuous geomagnetic field models
for the past 7 millennia: 1. A new global data compilation,
Geochem. Geophys. Geosyst., 6, Q02H15, doi:10.1029/
2004GC000800.
Korte, M., F. Donadini, and C. Constable (2009), Geomagnetic
field for 0–3 ka: 2. A new series of time‐varying global
models, Geochem. Geophys. Geosyst., 10, Q06008,
doi:10.1029/2008GC002297.
Lisé‐Pronovost, A., G. St‐Onge, S. Brachfeld, F. Barletta, and
D. Darby (2009), Paleomagnetic constraints on the Holocene
stratigraphy of the Arctic Alaskan margin, Global Planet.
Change, 68(1–2), 85–99.
Macrì, P., L. Sagnotti, J. Dinarès‐Turell, and A. Caburlotto
(2005), A composite record of Late Pleistocene relative
geomagnetic paleointensity from the Wilkes Land Basin
(Antarctica), Phys. Earth Planet. Inter., 151, 223–242,
doi:10.1016/j.pepi.2005.03.004.
Macrì, P., L. Sagnotti, and R. G. Lucchi (2006), A stacked
record of relative geomagnetic paleointensity for the past
270 kyr from the western continental rise of the Antarctic
Peninsula, Earth Planet. Sci. Lett., 252, 162–179, doi:10.1016/
j.epsl.2006.09.037.
Macrì, P., L. Sagnotti, J. Dinarès‐Turell, and A. Caburlotto
(2010), Relative geomagnetic paleointensity, excursions
and the Brunhes‐Matuyama precursor as recorded in a sediment core from Wilkes Land Basin (Antarctica), Phys. Earth
Planet. Inter., 179, 72–86, doi:10.1016/j.pepi.2009.12.002.
Maher, B. A. (1988), Magnetic properties of some synthetic
sub‐micron magnetites, Geophys. J. R. Astron. Soc., 94,
83–96.
McElhinny, M. W., and P. L. McFadden (1997), Palaeosecular
variation over the past 5 Myr based on a new generalized
database, Geophys. J. Int., 131, 240–252, doi:10.1111/
j.1365-246X.1997.tb01219.x.
McFadden, P. L., R. T. Merrill, and M. W. McElhinny (1988),
Dipole/quadrupole family modelling of paleosecular variation,
J. Geophys. Res., 93, 11,583–11,588, doi:10.1029/
JB093iB10p11583.
Merrill, R. T., M. W. McElhinny, and P. L. McFadden (1996),
The Magnetic Field of the Earth, 531 pp., Academic, San
Diego, Calif.
Meynadier, L., J.‐P. Valet, R. Weeks, N. J. Shackleton, and
V. L. Hagee (1992), Relative geomagnetic intensity of the
field during the last 140 ka, Earth Planet. Sci. Lett., 114,
39–57, doi:10.1016/0012-821X(92)90150-T.
Nilsson, A., I. Snowball, R. Muscheler, and C. B. Uvo (2010),
Holocene geocentric dipole tilt model constrained by sedimentary
paleomagnetic data, Geochem. Geophys. Geosyst.,
11, Q08018, doi:10.1029/2010GC003118.
Noel, M., and C. M. Batt (1990), A method for correcting geographically
separated remanence directions for the purpose
of archeomagnetic dating, Geophys. J. Int., 102, 753–756,
doi:10.1111/j.1365-246X.1990.tb04594.x.
Nowaczyk, N. R., and M. Antonow (1997), High resolution
magnetostratigraphy of four sediment cores from the
Greenland Sea–I. Identification of the Mono Lake excursion,
Laschamp and Biwa I/Jamaica geomagnetic polarity events,
Geophys. J. Int., 131, 310–324, doi:10.1111/j.1365-246X.
1997.tb01224.x.
Nowaczyk, N., and T. Frederichs (1999), Geomagnetic events
and relative paleointensity variations during the last 300 ka
as recorded in Kolbeinsey Ridge sediments, Iceland Sea,
indication for a strongly variable geomagnetic field, Int. J.
Earth Sci., 88, 116–131, doi:10.1007/s005310050250.
Ohno, M., and Y. Hamano (1993), Global analysis of the geomagnetic
field; time variation of the dipole moment and the
geomagnetic pole in the Holocene, J. Geomagn. Geoelectr.,
45, 1455–1466, doi:10.5636/jgg.45.1455.
Olson, P., and J. Aurnou (1999), A polar vortex in the Earth’s
core, Nature, 402, 170–173, doi:10.1038/46017.
Reimer, P. J., et al. (2009), IntCal09 and Marine09 radiocarbon
age calibration curves, 0–50,000 years cal BP, Radiocarbon,
51(4), 1111–1150.
Roberts, A. P. (2006), High‐resolution magnetic analysis of
sediment cores: Strengths, limitations and strategies for maximizing
the value of long‐core magnetic data, Phys. Earth
Planet. Inter., 156, 162–178, doi:10.1016/j.pepi.2005.
03.021.
Ryan, W. B. F., et al. (2009), Global Multi‐Resolution Topography
synthesis, Geochem. Geophys. Geosyst., 10, Q03014,
doi:10.1029/2008GC002332.
Sagnotti, L., P. Macrí, A. Camerlenghi, and M. Rebesco
(2001), Environmental magnetism of Antarctic Late Pleistocene
sediments and interhemispheric correlation of climatic
events, Earth Planet. Sci. Lett., 192, 65–80, doi:10.1016/
S0012-821X(01)00438-1.
Sagnotti, L., P. Rochette, M. Jackson, F. Vadeboin, J. Dinarès‐
Turell, and A. Winkler (2003), “Mag‐Net” Science Team,
Inter‐laboratory calibration of low field and anhysteretic
susceptibility measurements, Phys. Earth Planet. Inter.,
138, 25–38, doi:10.1016/S0031-9201(03)00063-3.
Sigmond, E. M. O. (1992), Bedrock map of Norway and adjacent
ocean areas, scale 1:3 million, Geol. Surv. of Norway,
Trondheim.
Snowball, I., L. Zillén, A. Ojala, T. Saarinen, and P. Sandgren
(2007), FENNOSTACK and FENNORPIS: Varve dated
Holocene paleomagnetic secular variation and relative
palaeointensity stacks for Fennoscandia, Earth Planet. Sci.
Lett., 255, 106–116, doi:10.1016/j.epsl.2006.12.009.
Sreenivasan, B., and C. A. Jones (2005), Structure and
dynamics of the polar vortex in the Earth’s core, Geophys.
Res. Lett., 32, L20301, doi:10.1029/2005GL023841.
Sreenivasan, B., and C. A. Jones (2006), Azimuthal winds,
convection and dynamo action in the polar region of the
planetary cores, Geophys. Astrophys. Fluid Dyn., 100,
319–339, doi:10.1080/03091920600807864.
St‐Onge, G., J. S. Stoner, and C. Hillaire‐Marcel (2003),
Holocene paleomagnetic records from the St. Lawrence
Estuary, eastern Canada: Centennial to millennial‐scale geomagnetic
modulation of cosmogenic isotopes, Earth Planet.
Sci. Lett., 209, 113–130, doi:10.1016/S0012-821X(03)
00079-7.
Stoner, J. S., J. E. T. Channell, D. A. Hodell, and C. D. Charles
(2003), A ∼580 kyr paleomagnetic record from the sub‐
Antarctic South Atlantic (Ocean Drlling Program Site 1089),
J. Geophys. Res., 108(B5), 2244, doi:10.1029/2001JB001390.
Stuiver, M., and P. J. Reimer (1993), Extended 14C data
base and revised Calib 3.0 14C age calibration program,
Radiocarbon, 35, 215–230.
Tauxe, L. (1993), Sedimentary records of relative paleointensity
of the geomagnetic field: Theory and practice, Rev. Geophys.,
31, 319–354, doi:10.1029/93RG01771.
Tauxe, L., and D. Kent (2004), A simplified statistical model
for the geomagnetic field and the detection of shallow bias
in paleomagnetic inclinations: Was the ancient magnetic
field dipolar? in Timescales of the Internal Geomagnetic
Field, Geophys. Monogr. Ser., vol. 145, edited by J. E. T.
Channell et al., pp. 101–115, AGU, Washington, D. C.
Tauxe, L., and T. Yamazaki (2007), Paleointensities, in Treatise
on Geophysics, vol. 5, edited by G. Schubert, pp. 509–563,
Elsevier, Oxford, U. K., doi:10.1016/B978-044452748-
6.00098-5.
Thompson, R. (1973), Palaeolimnology and palaeomagnetism,
Nature, 242, 182–184, doi:10.1038/242182a0.
Thompson, R., and D. R. Barraclough (1982), Geomagnetic
secular variation based on Spherical harmonic and cross
validation analyses of historical and archaeomagnetic data,
J. Geomagn. Geoelectr., 34, 245–263, doi:10.5636/jgg.
34.245.
Turner, G. M., and R. Thompson (1981), Lake sediment record
of the geomagnetic secular variation in Britain during Holocene
times, Geophys. J., 65, 703–725, doi:10.1111/j.1365-
246X.1981.tb04879.x.
Turner, G. M., and R. Thompson (1982), Detransformation of
the British geomagnetic secular variation record for Holocene
times, Geophys. J., 70, 789–792.
Valet, J. P. (2003), Time Variations in geomagnetic intensity,
Rev. Geophys., 41(1), 1004, doi:10.1029/2001RG000104.
Valet, J.‐P., and L. Meynadier (1998), A comparison of different
techniques for relative paleointensity, Geophys. Res.
Lett., 25, 89–92, doi:10.1029/97GL03489.
Vandamme, D. (1994), A new method to determine paleosecular
variation, Phys. Earth Planet. Inter., 85, 131–142,
doi:10.1016/0031-9201(94)90012-4. Verosub, K. L. (1977), Depositional and post‐depositional
processes in the magnetization of sediments, Rev. Geophys.
Space Phys., 15, 129–143, doi:10.1029/RG015i002p00129.
Xuan, C., and J. E. T. Channell (2010), Origin of apparent
magnetic excursions in deep‐sea sediments from the
Mendeleev‐Alpha Ridge, Arctic Ocean, Geochem. Geophys.
Geosyst., 11, Q02003, doi:10.1029/2009GC002879.
Zijderveld, J. D. A. (1967), A. C. demagnetization of rocks:
Analysis of results, in Methods in Palaeomagnetism, edited
by D. W. Collinson, K. M. Creer, and S. K. Runcorn,
pp. 254–286, Elsevier, Amsterdam.
Type
article
File(s)
No Thumbnail Available
Name
2011GC003810.pdf
Size
3.97 MB
Format
Adobe PDF
Checksum (MD5)
700a6814c98c468312cf6480a0cd9947