Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data
 
  • Details

Crustal Strain and Stress Fields in Egypt from Geodetic and Seismological Data

Author(s)
Rashwan, Mohamed  
Sawires, Rashad  
Radwan, Ali M.  
Sparacino, Federica  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Peláez, José Antonio  
Palano, Mimmo  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Language
English
Obiettivo Specifico
2T. Deformazione crostale attiva
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Remote Sensing  
Issue/vol(year)
/13 (2021)
ISSN
2072-4292
Electronic ISSN
2072-4292
Publisher
MDPI
Pages (printed)
1398
Date Issued
April 5, 2021
DOI
10.3390/rs13071398
Alternative Location
https://www.mdpi.com/2072-4292/13/7/1398
URI
https://www.earth-prints.org/handle/2122/15171
Subjects
04.03. Geodesy  
04. Solid Earth
04.06. Seismology  
Subjects

strain

stress

GNSS

Egypt

Abstract
The comparison between crustal stress and surface strain azimuthal patterns has provided new insights into several complex tectonic settings worldwide. Here, we performed such a comparison for Egypt taking into account updated datasets of seismological and geodetic observations. In north-eastern Egypt, the stress field shows a fan-shaped azimuthal pattern with a WNW–ESE orientation on the Cairo region, which progressively rotated to NW–SE along the Gulf of Aqaba. The stress field shows a prevailing normal faulting regime, however, along the Sinai/Arabia plate boundary it coexists with a strike–slip faulting one (σ1 ≅ σ2 > σ3), while on the Gulf of Suez, it is characterized by crustal extension occurring on near-orthogonal directions (σ1 > σ2 ≅ σ3). On the Nile Delta, the maximum horizontal stress (SHmax) pattern shows scattered orientations, while on the Aswan region, it has a WNW–ESE strike with pure strike–slip features. The strain-rate field shows the largest values along the Red Sea and the Sinai/Arabia plate boundary. Crustal stretching (up to 40 nanostrain/yr) occurs on these areas with WSW–ENE and NE–SW orientations, while crustal contraction occurs on northern Nile Delta (10 nanostrain/yr) and offshore (~35 nanostrain/yr) with E–W and N–S orientations, respectively. The comparison between stress and strain orientations over the investigated area reveals that both patterns are near-parallel and driven by the same large-scale tectonic processes.
Sponsors
This research was partially funded by the Programa Operativo FEDER Andalucía 2014-2020—A call made by the University of Jaén 2018.
References
1. Moores, E.M.; Fairbridge, R.W. Encyclopedia of European and Asian Regional Geology, Encyclopedia of Earth Sciences Series: Springer, London, 1998.
2. Reilinger, R.; McClusky, S. Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys. J. Int. 2011, 186(3), 971-979.
3. Sawires, R.; Peláez, J.A.; Fat-Helbary, R.E.; Panzera, F.; Ibrahim, H.A.; Hamdache, M. Probabilistic seismic hazard deag-gregation for selected Egyptian cities. Pure Appl. Geophys. 2017, 174(4), 1581-1600.
4. Sawires, R.; Peláez, J.A.; Fat-Helbary, R.E.; Ibrahim, H.A. An Earthquake Catalogue (2200 B.C. to 2013) for Seismotecton-ic and Seismic Hazard Assessment Studies in Egypt. In Earthquakes and Their Impact on Society; D'Amico, S. Eds.; Springer Natural Hazards, Springer, Cham, 2016.
5. Palano, M.; Imprescia, P.; Gresta, S. Current stress and strain-rate fields across the Dead Sea Fault System: Constraints from seismological data and GPS observations. Earth Planet. Sci. Lett. 2013, 369, 305-316.
6. Saleh, M.; Becker, M. New constraints on the Nubia–Sinai–Dead Sea fault crustal motion. Tectonophysics 2015, 651, 79-98.
7. Pietrantonio, G.; Devoti, R.; Mahmoud, S.; Riguzzi, F. Kinematics of the Suez-Sinai area from combined GPS velocity field. J. Geodyn. 2016, 102, 231-238.
8. EUREF. Permanent GNSS Network. Available online: www.epncb.oma.be (accessed on 23 February 2021).
9. SOPAC. Scripps Orbit and Permanent Array Center. Available online: http://sopac-csrc.ucsd.edu (accessed on 15 March 2021).
10. UNAVCO. Available online: www.unavco.org (accessed on 23 February 2021).
11. Egyptian Geological Survey Authority, Geological map of Egypt, 1981.
12. World Pop -Open Spatial Demographic Data and Research. Available online: www.worldpop.org (accessed on 23 Feb-ruary 2021).
13. Sawires, R.; Peláez, J.A.; Fat-Helbary, R.E.; Ibrahim, H.A.; García-Hernández, M.T. An updated seismic source model for Egypt. Earthquake Eng. - From engineering seismology to optimal seismic design of engineering structures 2015, 1-52.
14. Zoback, M. L. First‐and second‐order patterns of stress in the lithosphere: The World Stress Map Project. J. Geophys. Res.: Solid Earth 1992, 97(B8), 11703-11728.
15. Badawy, A. Status of the crustal stress in Egypt as inferred from earthquake focal mechanisms and borehole breakouts. Tectonophysics 2001, 343(1-2), 49-61.
16. Badawy, A. Seismicity of Egypt. Seismol. Res. Lett. 2005, 76 (2), 149–160.
17. Hussein, H.M.; Abou Elenean, K.M.; Marzouk, I.A.; Korrat, I.M.; Abu El-Nader, I.F.; Ghazala, H.; ElGabry M.N. Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mecha-nisms. J. Afr. Earth Sci. 2013, 81, 1-15.
18. Mohamed, E.K.; Hassoup, A.; Abou Elenean, K.M.; Othman, A. A.; Hamed, D.E.M. Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt. NRIAG J. Astron. Geophys. 2015, 4(2), 205-221.
19. Ali, S.M.; Badreldin, H. Present-day stress field in Egypt based on a comprehensive and updated earthquake focal mechanisms catalog. Pure Appl. Geophys. 2019, 176(11), 4729-4760.
20. Chang, C.P.; Chang, T.Y.; Angelier, J.; Kao, H.; Lee, J.C.; Yu, S.B. Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth Planet. Sci. Lett. 2003, 214(1–2), 115–127.
21. Townend, J.; Zoback, M.D. Stress, strain, and mountain building in central Japan. J. Geophys. Res. 2006, 111 (3).
22. Keiding, M.; Lund, B.; Árnadóttir, T. Earthquakes, stress, and strain along an obliquely divergent plate boundary: Rey-kjanes Peninsula, southwest Iceland. J. Geophys. Res. 2009, 114, B09306.
23. Palano, M.; González, P.J.; Fernández, J. The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth Planet. Sci. Lett. 2015, 430, 439-447.
24. The World Stress Map Project - A Service for Science and Earth System Management. Available online: www.world-stress-map.org/ (accessed on 23 February 20216).
25. Salamon, A.; Hofstetter, A.; Garfunkel, Z.; Ron, H. Seismotectonics of the Sinai subplate–the eastern Mediterranean re-gion. Geophys. J. Int. 2003, 155(1), 149-173.
26. Hofstetter, A. Seismic observations of the 22/11/1995 Gulf of Aqaba earthquake sequence. Tectonophysics 2003, 369(1-2), 21-36.
27. Jolivet, L.; Faccenna, C. Mediterranean extension and the Africa‐Eurasia collision. Tectonics 2000, 19(6), 1095-1106.
28. Mouthereau, F.; Lacombe, O.; Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dy-namics of Arabia/Eurasia plate convergence. Tectonophysics 2012, 532, 27-60.
29. Brew, G.; Lupa, J.; Barazangi, M.; Sawaf, T.; Al-Imam, A.; Zaza, T. Structure and tectonic development of the Ghab basin and the Dead Sea fault system, Syria. J. Geol. Soc. 2001, 158(4), 665-674.
30. Montadert, L.; Nicolaides, S.; Semb, P.H.; Lie, Ø. Petroleum Systems offshore Cyprus. In Petroleum Systems of the Tethyan Region; Marlow, L.; Kendall, C.; Yose, L., Eds.; The American Association of Petroleum Geologists, 2014; pp. 301-334.
31. Bartov, Y.; Steinitz, G.; Eyal, M.; Eyal, Y. Sinistral movement along the Gulf of Aqaba—its age and relation to the open-ing of the Red Sea. Nature 1980, 285(5762), 220-222.
32. Macgregor, D. History of the development of the East African Rift System: A series of interpreted maps through time. J. Afr. Earth. Sci. 2015, 101, 232-252.
33. Bulut, F.; Bohnhoff, M.; Eken, T.; Janssen, C.; Kılıç, T.; Dresen, G. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J. Geophys. Res.: Solid Earth 2012, 117(B7).
34. International Seismological Centre. Available online: www.isc.ac.uk/iscbulletin/search/catalogue/ (accessed on 23 Feb-ruary 2021).
35. Frohlich, C. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 1992, 75, 193-198.
36. Dewey, J. F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the western Mediterranean. Geol. Soc. (London, U.K.) Spec. Publ. 1989, 45(1), 265-283.
37. Joffe, S.; Garfunkel, Z. Plate kinematics of the circum Red Sea-a re-evaluation. Tectonophysics 1987, 141(1-3), 5-22.
38. Maamoun, M.; Megahed, A.; Allam, A. Seismicity of Egypt. Helwan Observatory Bulletin 1984, 4B,109 -160.
39. Kebeasy, R.M. Seismicity. In The Geology of Egypt; Said, R.; Balkema, A.A., Eds.; Rotterdam, 1990; pp. 51–59.
40. Ambraseys, N.N.; Melville, C.P.; Adams R.D. The Seismicity of Egypt, Arabia and Red Sea. Cambridge Univ. Press, 1994; pp. 1-137.
41. Badawy, A. Historical seismicity of Egypt. Acta Geod. Geophys. Hung. 1999, 34, 119–135.
42. Abou Elenean, K.M. Focal mechanisms of small and moderate size earthquakes recorded by the Egyptian National Seismic Network (ENSN), Egypt. NRIAG J. Geophys. 2007, 6(1), 119-153.
43. Poirier, J.P.; Taher, M.A. Historical seismicity in the near and Middle East, North Africa, and Spain from Arabic docu-ments (VIIth-XVIIIth century). Bull. Seismol. Soc. Am. 1980, 70(6), 2185-2201.
44. Global CMT Web Page. Available online: www.globalcmt.org (accessed on 23 February 2021).
45. European-Mediterranean RCMT Catalog - European-Mediterranean Regional Centroid-Moment Tensors. Available online: rcmt2.bo.ingv.it (accessed on 23 February 2021).
46. ENSN – Athena. Available on: http://ensn.nriag.sci.eg/ (accessed on 23 February 2021).
47. NEIC-USGS – Earthquake Hazards Program. Available on: earthquake.usgs.gov/earthquakes/search/ (accessed on 23 February 2021).
48. Korrat, I.M.; El Agami, N.L.; Hussein, H.M.; El-Gabry, M.N. Seismotectonics of the passive continental margin of Egypt. J. Afr. Earth. Sci. 2005, 41(1-2), 145-150.
49. Badawy, A.A.; Al-werr, A.; Ali, S.M. Relative location and source mechanism of inland earthquakes in Northern Egypt. J. Seismolog. 2014, 18(2), 257-276.
50. Michael, A.J. Determination of stress from slip data: faults and folds. J. Geophys. Res.: Solid Earth 1984, 89(B13), 11517-11526.
51. Michael, A.J. Use of focal mechanisms to determine stress: a control study. J. Geophys. Res.: Solid Earth 1987, 92(B1), 357-368.
52. Gephart, J.W.; Forsyth, D.W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J. Geophys. Res.: Solid Earth 1984, 89(B11), 9305-9320.
53. Lund, B.; Slunga, R. Stress tensor inversion using detailed microearthquake information and stability constraints: Ap-plication to Ölfus in southwest Iceland. J. Geophys. Res.: Solid Earth 1999, 104(B7), 14947-14964.
54. Arnold, R.; Townend, J. A Bayesian approach to estimating tectonic stress from seismological data. Geophys. J. Int. 2007, 170(3), 1336-1356.
55. Vavryčuk, V. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int. 2014, 199(1), 69-77.
56. McKenzie, D.P. The relation between fault plane solutions for earthquakes and the directions of the principal stress-es. Bull. Seismol. Soc. Am. 1969, 59(2), 591-601.
57. Bott, M.H.P. The mechanics of oblique slip faulting. Geol. Mag. 1959, 96(2), 109-117.
58. Michael, A.J. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New tech-niques and results. J. Geophys. Res. 1991, 96, 6303– 6319.
59. Lund, B.; Townend, J. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys. J. Int. 2007, 170(3), 1328-1335.
60. Mahmoud, S.; Reilinger, R.; McClusky, S.; Vernant, P.; Tealeb, A. GPS evidence for northward motion of the Sinai Block: implications for E. Mediterranean tectonics. Earth Planet. Sci. Lett. 2005, 238(1-2), 217-224.
61. Radwan, A.M.; Hosny, A.; Kotb, A.; Khalil, A.; Abed, A.; Fernandes, R.M.S.; Rayan, A. Assessment of the geodynamical settings around the main active faults at Aswan area, Egypt. Arabian J. Geosci. 2015, 8(7), 4317-4327.
62. Riguzzi, F.; Mahmoud, S.M.; Tealeb, A. Displacement pattern of the Sinai area: first results from GPS. Annals of Geophys-ics 1999, 42(4).
63. Sakr, K.; Radwan, A.M.; Rashwan, M.; Gomaa, M. Estimation of crustal movements using the Global Positioning System (GPS) measurements along Nile Valley area, Egypt from 2007 to 2012. NRIAG J. Astron. Geophys. 2015, 4(1), 55-63.
64. Abdel-Monem, S.M.; Zahran, K.H.; Saleh, M., Yossef, M.M.; Omran, A.A.; Radwan, A.M. Gavity observation and crustal deformation at Cairo Region and its geodynamical implications. World Appl Sci J 2013, 21(12), 1721–1728.
65. Abdel-Monem, S.M.; Becker, M.; Saleh, M. Comparative deformation analysis for Abu Dabab area, Egypt. Acta Geod. Geophys. Hung. 2012, 47(3), 1–18.
66. Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Sofware Version 5.2; Astronomical Institute, University of Bern, 2015; Available online: http://www.bernese.unibe.ch/docs/DOCU52.pdf (accessed on 23 February 2021).
67. Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. Introduction to GAMIT/GLOBK, Release 10.7; Massachusetts In-stitute of Technology: Cambridge, UK, 2018; Available online: www-gpsg.mit.edu (accessed on 23 February 2021).
68. Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from fes2004. Ocean Dyn. 2006, 56, 394–415.
69. Welcome to the free ocean tide loading provider. Available online: holt.oso.chalmers.se/loading (accessed on 23 Febru-ary 2021).
70. International GNSS Service – 2nd Data Reprocessing Campaign. Available online: acc.igs.org/reprocess2.html (accessed on 23 February 2021).
71. Petrie, E.J.; King, M.A.; Moore, P.; Lavallée, D.A. Higher‐order ionospheric effects on the GPS reference frame and ve-locities. J. Geophys. Res.: Solid Earth 2010, 115(B3).
72. NASA Earth Data. Available online: https://cddis.nasa.gov/archive/gnss/products/ionex/ (accessed on 23 February 2021).
73. Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from Eu-ropean Centre for Medium‐Range Weather Forecasts operational analysis data. J. Geophys. Res.: Solid Earth 2006, 111(B2).
74. Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Refer-ence Frame modeling nonlinear station motions. J. Geophys. Res.: Solid Earth 2016, 121, 6109-6131.
75. Saria, E.; Calais, E.; Delvaux, D.; Hartnady, C.J.H.; Stamps, D.S. Present-day kinematics of the East African Rift. J. Geophys. Res.: Solid Earth 2014, 119, 3584–3600.
76. Shen, Z.-K.; Wang, M.; Zeng, Y.; Wang, F. Optimal interpolation of spatially discretized geodetic data. Bull. Seismol. Soc. Am. 2015, 105, 2117-2127.
77. Deves, M.; King, G.C.P.; Klinger, Y.; Agnon, A. Localised and distributed deformation in the Lithosphere: modelling the Dead Sea region in 3 dimensions. Earth Planet. Sci. Lett. 2011, 308, 172–184.
78. Lyberis, N. Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics 1988, 153(1-4), 209-220.
79. Montenat, C.; d’Estevou, P.O.; Jarrige, J.J.; Richert, J.P. Rift development in the Gulf of Suez and the north-western Red Sea: structural aspects and related sedimentary processes. In Sedimentation and Tectonics in Rift Basins Red Sea-Gulf of Aden. Springer, Dordrecht, 1998; pp. 97-116.
80. Heidbach, O.; Barth, A.; Müller, B.; Reinecker, J.; Stephansson, O.; Tingay, M.; Zang, A. WSM quality ranking scheme, database description and analysis guidelines for stress indicator. World Stress Map Technical Report 16-01, GFZ German Research Centre for Geosciences, 2016.
81. Awad, M.; Mizoue, M. Earthquake activity in the Aswan region, Egypt. PAGEOPH 1995, 145, 69–86.
82. Abou-Aly, N.; Abdel-Monem, S.M.; Salah, M.; Saleh, M.; Sherif, M.; Khalil, H.; Hassib, G.; Rayan, A. Gps measurements of current crustal movements along the Gulf of Suez. Nriag J Geophys Special issue 2011, 45–66.
83. Saleh, M.; Becker, M. A new velocity field from the analysis of the Egyptian Permanent GPS Network (EPGN). Arabian J. Geosci. 2014, 7(11), 4665-4682.
84. Saleh, M.; Becker, M. New estimation of Nile Delta subsidence rates from InSAR and GPS analysis. Environ. Earth Sci. 2019, 78, 6.
85. Rateb, A.; Abotalib, A.Z. Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ. 2020, 729, 138868.
86. Becker, R.H.; Sultan, M. Land subsidence in the Nile Delta: inferences from radar interferometry. The Holocene 2009, 19(6), 949-954.
Type
article
File(s)
Loading...
Thumbnail Image
Name

2021_Rashwan et al [Egypt strain stress] Remote.Sensing.pdf

Description
Open Access published article
Size

10.02 MB

Format

Adobe PDF

Checksum (MD5)

929ef11c814296ce2a027d367d1a2ef9

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback