Gas geothermometry, soil CO 2 degassing, and heat release estimation to assess the geothermal potential of the Alpehue Hydrothermal Field (Sollipulli volcano, Southern Chile)
Author(s)
Sánchez-Alfaro, Pablo
Pérez-Flores, Pamela
Serrano, Gabriela
Morales, Gonzalo
Tassara, Santiago
Soler, Vicente
Language
English
Obiettivo Specifico
OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Issue/vol(year)
/122(2024)
ISSN
0375-6505
Publisher
Elsevier
Pages (printed)
103092
Date Issued
2024
Abstract
The Alpehue Hydrothermal Field (AHF) near the Sollipulli Volcano in the Southern Volcanic Zone of Chile shows promise as a significant geothermal resource. A comprehensive geothermal exploration survey was conducted, including the evaluation of hydrothermal gases, geothermometer calculations, and CO 2 flux measurements, to assess the AHF's geothermal potential. Our results indicate that the hydrothermal gasses at the AHF primarily originate from primitive, mantle-derived sources, with some contribution from crustal sediments. Two different CO 2 populations of fluxes were identified. One corresponds to the background emission related to the soil biological activity (mean ~7.7 g⋅m − 2 ⋅d − 1), and the other, much more significant, emanates from an endogenous source related to the Alpehue hydrothermal reservoir (mean ~461 g⋅m − 2 ⋅d − 1). Reservoir temperatures were calculated using gas geothermometry yielding average temperatures of 249 • C. The calculated heat flow rate of the AHF is approximately 3.3 MW and the heat flux corresponds to 156 thermal MW⋅km − 2 , which could be considered a medium geothermal potential comparable to other systems worldwide. Although further studies are needed to fully address its exploitability, this study presents favorable characteristics of the AHF that make it a promising avenue for further exploration.
References
Aguilera, E., Cioni, R., Gherardi, F., Magro, G., Marini, L., Zhonghe, P., 2005. Chemical
and isotope characteristics of the Chachimbiro geothermal fluids (Ecuador).
Geothermics 34, 495–517.
Agusto, M., Tassi, F., Caselli, A., Vaselli, O., Rouwet, D., Capaccioni, B., Caliro, S.,
Chiodini, G., Darrah, T., 2013. Gas geochemistry of the magmatic-hydrothermal
fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina). J. Volcanol.
Geotherm. Res. 257, 44–56.
All`egre, C.J., Moreira, M., Staudacher, T., 1995. 4He/3He dispersion and mantle
convection. Geophys. Res. Lett. 22, 2325–2328.
Alonso, M., Padr´on, E., Sumino, H., Hern´andez, P.A., Meli´an, G.V., Asensio-Ramos, M.,
Rodríguez, F., Padilla, G., García-Merino, M., Amonte, C., P´erez, N.M., 2019. Heat
and Helium-3 Fluxes from Teide Volcano, Canary Islands. Spain Geofuids 2019, 12.
https://doi.org/10.1155/2019/3983864. Article 3983864.
Aravena, D., Mu˜noz, M., Morata, D., Lahsen, A., Parada, M.A., Dobson, P., 2016.
Assessment of high enthalpy geothermal resources and promising areas of Chile.
Geothermics 59, 1–13. https://doi.org/10.1016/j.geothermics.2015.09.001.
Arn`orsson, S., Gunnlaugsson, E., 1985. New gas geothermometers for geothermal
exploration-Calibration and application. Geochim. Cosmochim. Acta 49, 1307–1325.
Barcelona, H., Senger, M., Yagupsky, D, 2021. Resource assessment of the Copahue
geothermal field. Geothermics 90, 101987.
Batista Cruz, R.Y., Rizzo, A.L., Grassa, F., Bernard Romero, R., Gonz´alez Fern´andez, A.,
Kretzschmar, T.G., G´omez-Arias, E, 2019. Mantle Degassing Through Continental
Crust Triggered By Active faults: The case of the Baja California Peninsula, 20.
Mexico. Geochemistry, Geophy., Geosys. https://doi.org/10.1029/2018GC007987.
Benavente, O., Tassi, F., Reich, M., Aguilera, F., Capecchiacci, F., Gutierrez, F.,
Vaselli, O., Rizzo, A., 2016. Chemical and isotopic features of cold and thermal fluids
discharged in the Southern Volcanic Zone between 32.5◦S and 36◦S: insights into the
physical and chemical processes controlling fluid geochemistry in geothermal
systems of Central Chile. Chem. Geol 420, 97–113.
Cabassi, J., Venturi, S., Di Bennardo, F., Nisi, B., Tassi, F., Magi, F., Ricci, A., Picchi, G.,
Vaselli, O., 2021. Flux measurements of gaseous elemental mercury (GEM) from the
geothermal area of “Le Biancane” natural park (Monterotondo Marittimo, Grosseto,
Italy): biogeochemical processes controlling GEM emission. J. Geochem. Explor.
228, 106824.
Capaccioni, B., Tassi, F., Renzulli, A., Vaselli, O., Menichetti, M., Inguaggiato, S., 2014.
Geochemistry of thermal fluids in NW Honduras: new perspectives for exploitation
of geothermal areas in the southern Sula graben. J. Volcanol. Geother. Res 280,
40–52.
Cappetti, G., Giorgi, N., Arias, A., Volpi, G., Rivera, G., Cei, M., Fedeli, M., Di Marzio, G.,
Pasri, M., Massei, S., Baccarin, F., 2021. The Cerro Pabell´on geothermal project
(Chile): from surface exploration to energy production. In: Proceedings World
Geothermal Congress 2020, Reykjavik, Iceland, May 2021.
Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulation to
CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108
(B9), 2425. https://doi.org/10.1029/2002JB002165.
Cembrano, J., Lara, L., 2009. The link between volcanism and tectonics in the southern
volcanic zone of the Chilean Andes: a review. Tectonophysics. 471 (1–2), 96–113.
https://doi.org/10.1016/j.tecto.2009.02.038.
Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4
system. Geochim. Cosmochim. Acta 62 (15), 2673–2687.
Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements
in volcanic and geothermal areas. Appl. Geochem. 13 (5), 543–5552. https://doi.
org/10.1016/S0883-2927(97)00076-0.
Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., 2005. Carbon
dioxide diffuse degassing and estimation of heat release from volcanic and
hydrothermal systems. J. Geophys. Res. 110, B08204. https://doi.org/10.1029/
2004JB003542.
Chiodini, G., Baldini, A., Barberi, F., Carapezza, M.L., Cardellini, C., Frondini, F.,
Granieri, D., Ranaldi, M., 2007. Carbon dioxide degassing at Latera caldera (Italy):
geothermal reservoir and evaluation of its potential energy. J. Geophys. Res. 112
(17), B12204. https://doi.org/10.1029/2006JB004896.
Chiodini, G., Caliro, S., Cardellini, C., Avino, R., Granieri, D., Schmidt, A., 2008. Carbon
isotopic composition of soil CO2 efflux, a powerful method to discriminate different
sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth. Planet.
Sci. Lett. 274, 372–379. https://doi.org/10.1016/j. epsl.2008.07.051.
Chiodini, G., Cardellini, C., Lamberti, M.C., Agusto, M., Caselli, A., Liccioli, C.,
Tamburello, G., Tassi, F., Vaselli, O., Caliro, S., 2015. Carbon dioxide diffuse
emission and thermal energy release from hydrothermal systems at
Copahue–Caviahue Volcanic Complex (Argentina). J. Volcanol. Geother. Res 304,
294–303. https://doi.org/10.1016/j. jvolgeores.2015.09.007.
Cinti, D., Tassi, F., Procesi, M., Bonini, M., Capecchiacci, F., Voltattorni, N., Vaselli, O.,
Quattrocchi, F., 2014. Fluid geochemistry and geothermometry in the unexploited
geothermal field of the Vicano–Cimino Volcanic District (Central Italy). Chem. Geol
371, 96–114. https://doi.org/10.1016/j.chemgeo.2014.02.005.
CNE, 2023. Comisi´on Nacional de Energía. Reporte ERNC 82. Junio 2023 (in Spanish).
Collignon, M., Cardellini, C., Duprat-Oualid, S., Hammer, Ø., Chiodini, G.,
Vandemeulebrouck, J., Gonzalez-Vidal, D., Espinoza, A., Tassara, A., Ruch, J., 2021.
Carbon dioxide diffuse emission at the Tolhuaca hydrothermal system (Chile)
controlled by tectonics and topography. J. Volcanol. Geother. Res. 417, 107316.
D’Amore, F., Panichi, C., 1980. Evaluation of deep temperatures of hydrothermal
systems by a new gas geothermometer. Geochim. Cosmochim. Acta 44, 549–556.
Daniele, L., Taucare, M., Viguier, B., Arancibia, G., Aravena, D., Roquer, T.,
Sepúlveda, J., Molina, E., Delgado, A., Mu˜noz, M., Morata, D., 2020. Exploring the
shallow geothermal resources in the Chilean Southern Volcanic Zone: insight from
the Liqui˜ne thermal springs. J. Geochem. Explor. 218, 106611.
David, M., 1977. Geostatistical Ore Reserve Estimation. Elsevier Science, New York,
p. 384.
Dawson, G.B., 1964. The nature and assessment of heat flow from hydrothermal areas.
New Zealand J. Geol. Geophy 7, 155–171.
Dereinda F.H., 2008. CO2 emissions from the Krafla Geothermal Area, Iceland, United
Nations University Geothermal Training Programme, Reports 2008.
Di Piazza, A., Rizzo, A.L., Barberi, F., Carapezza, M.L., De Astis, G., Romano, C.,
Sortino, F., 2015. Geochemistry of the mantle source and magma feeding system
beneath Turrialba volcano. Costa Rica. Lithos 232, 319–335.
Dobson, P., Gasperikova, E., Spycher, N., Lindsey, N.J., Rong Guo, T., Shan Chen, W., Hsi
Liu, C., Wang, C.-J., Chen, S.-N., Fowler, A.P.G., 2018. Conceptual model of the
Tatun geothermal system. Taiwan Geotherm. 74, 273–297.
Elío, J., Ortega, M.F., Nisi, B., Mazadiego, L.F., Vaselli, O., Caballero, J., Chac´on, E.,
2016. A multi-statistical approach for estimating the total output of CO2 from diffuse
soil degassing by the accumulation chamber method. Int. J. Greenh. Gas Contr. 47,
351–363.
Fischer, T.P., Chiodini, G., 2015. Volcanic, Magmatic and Hydrothermal Gases. The
Encyclopedia of Volcanoes. Elsevier. https://doi.org/10.1016/B978-0-12-385938-
9.00045-6.
Fischer, T.P., Sturchio, N.C., Stix, J., Arehart, G.B., Counce, D., Williams, S.N., 1997. The
chemical and isotopic composition of fumarolic gases and spring discharges from
Galeras Volcano, Colombia. J. Volcanol. Geother. Res. 77, 229–253.
Fridriksson, T., Bjarni Reyr, K., Halld´or, A., Eygerður, M., Snj´olaug, ´O., Chiodini, G.,
2006. CO2 emissions and heat flow through soil, fumaroles, and steam heated mud
pools at the Reykjanes geothermal area, SW Iceland. Appl. Geochem. 21 (9),
1551–1569. https://doi.org/10.1016/j.apgeochem.2006.04.006.
Giammanco, S., Meli´an, G., Neri, M., Hern´andez, P.A., Sortino, F., Barrancos, J.,
L´opez, M., Pecoraino, G., P´erez, N.M., 2016. Active tectonic features and structural
dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil
temperature surveying. J. Volcanol. Geother. Res. 311, 79–98. https://doi.org/
10.1016/j.jvolgeores.2016.01.004.
Giggenbach, W.F., Goguel, R.L., 1989. Collection and analysis of geothermal and
volcanic water and gas discharges. DSIR Chem 2401. Report.
Giggenbach, W.F., Poreda, R.J., 1993. Helium isotopic and chemical composition of
gases from volcanic hydrothermal systems in the Philippines. Geothermics 22,
369e–380e.
Giggenbach, W.F., Tedesco, D., Sulistiyo, Y., Caprai, A., Cioni, R., Favara, R., Fischer, T.
P., Hirabayashi, J.-I., Korzhinsky, M., Martini, M., Menyailov, I., Shinohara, H.,
2001. Evaluation of results from the fourth and fifth IAVCEI field workshops on
volcanic gases, Vulcano island, Italy and Java. Indon. J. Volcanol. Geother. Res. 108
(1–4), 157–172.
Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas
samples. Bulletin Volcanolog. Vol 39, 132–145.
Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44 (12),
2021–2032.
Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas
discharges from White Island, New Zealand. Appl. Geochem. 2 (2), 143–161.
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca
geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765.
Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. Appl.
Geochem. Geother. Reserv. Develop. 119–144. Ed Franco D’Amore. Unitar/UNDP.
Gilbert, J., Stasiuk, M., Lane, S., Adam, C., Murphy, M., Sparks, R., Naranjo, J., 1996.
Non-explosive, constructional evolution of the ice-filled caldera at Volc´an Sollipulli,
Chile. Bull. Volcanol. 58, 67–83.
Giudetti, G., Tempesti, L., 2021. First geochemical data from Cerro Pabell´on geothermal
project (Apacheta Region, Chile). In: Proceedings World Geothermal Congress 2020,
Reykjavik, Iceland, May 2021.
Granieri, D., Mazzarini, F., Cerminara, M., Calusi, B., Scozzari, A., Menichini, M.,
Lelli, M., 2023. Shallow portion of an active geothermal system revealed by
multidisciplinary studies: the case of Le Biancane (Larderello, Italy). Geothermics
108, 102616. https://doi.org/10.1016/j.geothermics.2022.102616.
Grassa, F., Capasso, G., Oliveri, Y., Sollami, A., Carreira, P., Carvalho, M.R., Marques, J.
M., Nunes, J.C., 2010. Nitrogen isotopes determination in natural gas: analytical
method and first results on magmatic, hydrothermal and soil gas samples. Isotop.
Environ. Heal. Stud. 46 (2), 141–155.
Harvey, M.C., Rowland, J.V., Chiodini, G., Rissmann, C., Bloomberg, S., Hern´andez, P.A.,
Mazot, A., Viveiros, F., Werner, C., 2015. Heat flux from magmatic hydrothermal
systems related to availability of fluid recharge. J. Volcanol. Geotherm. Res. 302,
225–236. https://doi.org/10.1016/j.jvolgeores.2015.07.003.
Hauser A., 1997. Register and characterization of mineral and thermal springs of Chile,
50. Servicio Nacional de Geología y Minería, Santiago, Chile 90 (in Spanish).
Hern´andez, P.A., P´erez, N.M., Fridriksson, T., Jolie, E., Ilyinskaya, E., Th´arhallsson, A.,
´Ivarsson, G., Gíslason, G., Gunnarsson, I., J´onsson, B., Padr´on, E., Meli´an, G.,
Mori, T., Notsu, K., 2012. Diffuse volcanic degassing and thermal energy release
from Hengill volcanic system, Iceland. Bull. Volcanol 74, 2435–2448. https://doi.
org/10.1007/s00445-012-0673-2.
Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at
subduction zones. Rev. Miner. Geochem. 47 (1), 319–370.
IPCC, 2023. Synthesis Report for the Sixth Assessment Report during the Panel’s 58th
Session held in Interlaken, Switzerland from 13 - 19 March 2023.
J´acome-Paz, M.P., P´erez-Z´arate, D., Prol-Ledesma, R.M., Rodríguez-Díaz, A.A., Estrada-
Murillo, A.M., Gonz´alez-Romo, I.A., Maga˜na-Torres, E., 2019. Two New Geothermal
Prospects in the Mexican Volcanic Belt: La Escalera and Agua Caliente – Tzitzio
geothermal Springs, 80. Geothermics, Michoac´an, M´exico, pp. 44–55.
Jentsch, A., Jolie, E., Jones, D.G., Taylor-Curran, H., Peiffer, L., Zimmer, M., Lister, B.,
2020. Magmatic volatiles to assess permeable volcano-tectonic structures in the Los
Humeros geothermal field. Mexico. J. Volcanol. Geotherm. R. 394, 106820.
Lachowycz, S., Pyle, D., Gilbert, J., Mather, T., Mee, K., Naranjo, J., Hobbs, L., 2015.
Glaciovolcanism at Volc´an Sollipulli, southern Chile: lithofacies analysis and
interpretation. J. Volcanol. Geotherm. R. 303, 59–78.
Lahsen, A., 1988. Chilean geothermal resources and their possible utilization.
Geothermics 17, 401–410. https://doi.org/10.1016/0375-6505(88)90068-5.
Lahsen, A., Rojas, J., Morata, D., Aravena, D., 2015. Geothermal exploration in Chile:
country update. In: Proceedings of the World Geothermal Congress, Melbourne,
Australia, 19 - 25 April 2015.
Lamberti, M.C., Agusto, M., Llano, J., Nogu´es, V., Venturi, S., V´elez, M.L., Albite, J.M.,
Yiries, J., Chiodini, G., Cardellini, C., Tassi, F., García, S., Nu˜nez, N., S´anchez, H.,
G´omez, M., 2021a. Soil CO2 flux baseline in Planch´on–Peteroa Volcanic Complex,
Southern Andes, Argentina – Chile. J. South Am. Earth. Sci. 105, 102930.
Lamberti, M.C., Chiodi, A., Agusto, M., Filipovich, R., Massenzio, A., B´aez, W., Tassi, F.,
Vaselli, O., 2021b. Carbon dioxide diffuse degassing as a tool for computing the
thermal energy release at Cerro blanco geothermal system, Southern Puna (NW
Argentina). J. South Am. Earth. Sci. 105, 102833.
Lemus M., Honores C., 2019. Favorabilidad geot´ermica de la cordillera Principal de la regi
´on de La Araucanía. Servicio Nacional de Geología y Minería, Informe Registrado
IR- 19-75 178 p. (2 mapas escala 250.000. Santiago).
Lopez, T., Aguilera, F., Tassi, F., De Moor, J.M., Bobrowski, N., Aiuppa, A.,
Tamburello, G., Rizzo, A.L., Liuzzo, M., Viveiros, F., Cardellini, C., Silva, C.,
Fischer, T., Jean-Baptiste, P., Kazayaha, R., Hidalgo, S., Malowany, K., Lucic, G.,
Bagnato, E., Bergsson, B., Reath, K., Liotta, M., Carn, S., Chiodini, G., 2018. New
insights into the magmatic-hydrothermal system and volatile budget of Lastarria
volcano, Chile: integrated results from the 2014 IAVCEI CCVG 12th volcanic gas
workshop. Geosphere 14 (3), 1–25.
L´opez-Escobar, L., Cembrano, J., Moreno, H., 1995. Geochemistry and tectonics of the
Chilean Southern andes basaltic quaternary volcanism (37-46 S). Andean Geol 22
(2), 219–234.
Lund, J.W., Huttrer, G.W., Toth, A.N., 2022. Characteristics and trends in geothermal
development and use, 1995 to 2020. Geothermics 105, 102522. https://doi.org/
10.1016/j.geothermics.2022.102522.
Lund, J.W., Toth, A.N., 2021. Direct utilization of geothermal energy 2020 worldwide
review. Geothermics 90, 101915. https://doi.org/10.1016/j.
geothermics.2020.101915.
Maza, S.N., Collo, G., Morata, D., Taussi, M., Vidal, J., Mattioli, M., Renzulli, A., 2021.
Active and fossil hydrothermal zones of the Apacheta volcano: insights for the Cerro
Pabell´on hidden geothermal system (Northern Chile). Geothermics. 96, 102206.
Mesa de, Geotermia, 2018. Rol De La Geotermia En El Desarrollo De La Matriz El´ectrica
Chilena. Ministerio de Energía, Chile, p. 66. http://www.minenergia.cl/mesageotermia.
Minissale, A., Corti, G., Tassi, F., Darrah, T.H., Vaselli, O., Montanari, D.,
Montegrossi, G., Yirgu, G., Selmo, E., Teclu, A., 2017. Geothermal potential and
origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian
Rift, East Africa. J. Volcanol. Geotherm. R. 336, 1–18.
Minissale, A., 2018. A simple geochemical prospecting method for geothermal resources
in flat areas. Geothermics 72, 258–267.
Montanaro, C., Ray, L., Cronin, S.J., Calibugan, A., Rott, S., Bardsley, C., Scheu, B., 2023.
Linking top and subsoil types, alteration and degassing processes at Rotokawa
geothermal field, New Zealand. Front. Earth. Sci. (Lausanne) 10, 1067012. https://
doi.org/10.3389/feart.2022.1067012.
Morata, D., Aravena, D., Lahsen, A., Mu˜noz, M., Valdenegro, P., 2021. Chile Up-Date: the
first south american geothermal power plant after one century of exploration. In:
Proceedings World Geothermal Congress 2020, Reykjavik, Iceland, May 2021.
Morata, D., Gallardo, R., Maza, S., Arancibia, G., L´opez-Contreras, C., Mura, V.,
Cannatelli, C., Reich, M., 2023. Hydrothermal alteration in the Nevados de Chill´an
geothermal system, southern andes: multidisciplinary analysis of a fractured
reservoir. Minerals 13, 722.
Moreno-Gonzalez, R., 2022. Vegetation responses to past volcanic disturbances at the
Araucaria araucana forest-steppe ecotone in northern Patagonia. Ecol. Evol 12 (10),
e9362. https://doi.org/10.1002/ece3.9362.
Moya, D., Ald`as, C., Kaparaju, P., 2018. Geothermal energy: power plant technology and
direct heat applications. Renew. Sustain. Ener. Rev. 94, 889–901. https://doi.org/
10.1016/j.rser.2018.06.047.
Munoz-Saez, C., Perez-Nu˜nez, C., Martini, S., Vargas-Barrera, A., Reich, M., Morata, D.,
Manga, M., 2020. The Alpehue geyser field, Sollipulli Volcano, Chile. J. Volcanol.
Geotherm. R. 406 (2020), 107065.
Naranjo, J., Moreno, H., Empar´an, C., Murphy, M., 1993. Volcanismo explosivo reciente
en la caldera del volc´an Sollipulli, Andes del Sur (39◦S). Revista Geol´ogica de Chile
Vol. 20 (2), 167–191.
NDC - Gobierno de Chile, 2020. Contribuci´on Determinada a Nivel Nacional (NDC) De
Chile actualizaci´on 2020. In Spanish.
Ostapenko, S.V., Spektor, S.V., Netesov, Y.P., 1998. San Jacinto–Tizate geothermal field,
Nicaragua: exploration and conceptual model. Geothermics 27, 361–378.
Pereira, M.L., Matias, D., Viveiros, F., Moreno, L., Silva, C., Zanon, V., Uchˆoa, J., 2022.
The contribution of hydrothermal mineral alteration analysis and gas
geothermometry for understanding high-temperature geothermal fields – the case of
Ribeira Grande geothermal field. Azores. Geotherm 105, 102519.
P´erez-Estay, N., Molina-Piernas, E., Roquer, T., Aravena, D., Araya Vargas, J., Morata, D.,
Arancibia, G., Valdenegro, P., García, K., Elizalde, D., 2022. Shallow anatomy of
hydrothermal systems controlled by the Liqui˜ne-Ofqui fault system and the andean
transverse faults: geophysical imaging of fluid pathways and practical implications
for geothermal exploration. Geothermics 104, 102435.
P´erez-Flores, P., Cembrano, J., S´anchez-Alfaro, P., Veloso, E., Arancibia, G., Roquer, T.,
2016. Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting:
insights from the northern termination of the Liqui˜ne–Ofqui fault System. Chile.
Tectonophy. 680, 192–210.
Pinti, D.L., Castro, M.C., L´opez-Hern´andez, A., Hern´andez Hern´andez, M.A., Richard, L.,
Hall, C.M., Shouakar-Stash, O., Flores-Armenta, M., Rodríguez-Rodríguez, M.H.,
2019. Cerro Prieto geothermal field (Baja California, Mexico) – A fossil system?
Insights from a noble gas study. J. Volc. Geoth. Res. 371, 32–45.
Powell, T., 2000. A review of exploration gas geothermometry. In: Proceedings, Twenty-
Fifth Workshop on. Geothermal Reservoir Engineering Stanford University, Stanford,
California. January 24-26, 2000.
Procesi, M., 2014. Geothermal potential evaluation for northern Chile and suggestions
for new energy plans. Energies (Basel) 7, 5444–5459.
Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration
and its relationship to vegetation and climate. Tellus 44B, 81–99.
Revil, A., Finizola, A., Piscitelli, S., Rizzo, E., Ricci, T., Crespy, A., Angeletti, B.,
Balasco, M., Barde Cabusson, S., Bennati, L., Bol´eve, A., Byrdina, S., Carzaniga, N., Di
Gangi, F., Morin, J., Perrone, A., Rossi, M., Roulleau, E., Suski, B., 2008. Inner
structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy)
revealed by high-resolution electric resistivity tomography coupled with selfpotential,
temperature, and CO2 diffuse degassing measurements. J. Geophys. R 113,
B7.
Rissmann, C., Christenson, B., Werner, C., Leybourne, M., Cole, J., Gravley, D., 2012.
Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo
volcanic zone, New Zealand. App. Geochem. 27, 223–239.
Rodrigo-Naharro, J., Nisi, B., Vaselli, O., Lelli, M., Salda˜na, R., Clemente-Jul, C., P´erez
del Villar, L., 2013. Diffuse soil CO2 flux to assess the reliability of CO2 storage in the
Mazarr´on–Ga˜nuelas Tertiary Basin (Spain). Fuel 114, 162–171.
Rogers, G.F.C., Mayhew, Y.R., 1995. Thermodynamic and Transport Properties of Fluids.
Blackwell Publishing Ltd., Oxford (UK).
Rojas, A., Sruoga, P., Lamberti, M.C., Agusto, M., Tondreau, J., Mendoza, N., Daniele, L.,
Morata, D., 2022. Unravelling the hydrothermal system of Laguna del Maule restless
volcanic field, in the Andean Southern Volcanic Zone (36◦ 10′S). J. Volcanol.
Geotherm. Res. 424, 107498.
Roulleau, E., Tardani, D., Sano, Y., Takahata, N., Vinet, N., Bravo, F., Mu˜noz, C.,
Sanchez, J., 2016. New insight from noble gas and stable isotopes of geothermal/
hydrothermal fluids at Caviahue-Copahue Volcanic complex: boiling steam
separation and water-rock interaction at shallow depth. J. Volcanol. Geotherm. Res.
328, 70–83.
Roulleau, E., Bravo, F., Pinti, D.L., Barde-Cabusson, S., Pizarro, M., Tardani, D., de la, Cal
F., 2017. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic
complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and
temperature, self- potential, and helium isotopes. J. Volcanol. Geotherm. Res. 341,
104–118.
Roulleau, E., Tardani, D., Vlastelic, I., Vinet, N., Sanchez, J., Sano, Y., Takahata, N.,
2018. Multi-element isotopic evolution of magmatic rocks from Caviahue-Copahue
Volcanic complex (Chile-Argentina): involvement of mature slab recycled materials.
Chem. Geol. 476, 370–388.
S´anchez, P., P´erez-Flores, P., Arancibia, G., Cembrano, J., Reich, M., 2013. Crustal
deformation effects on the chemical evolution of geothermal systems: the intra-arc
Liqui˜ne– Ofqui fault system, Southern Andes. Int. Geol. Rev. 55 (11), 1384–1400.
Sanchez-Alfaro, P., Sielfeld, G., Van Campen, B., Dobson, P., Fuentes, V., Reed, A.,
Palma-Behnke, R., Morata, D., 2015. Geothermal barriers, policies and economics in
Chile – lessons for the Andes. Renew. Sustain. Ener. Rev. 51, 1390–1401.
Sanchez-Alfaro, P., Reich, M., Arancibia, G., P´erez-Flores, P., Cembrano, J., Driesner, T.,
Lizama, M., Rowland, J., Morata, D., Heinrich, C.A., Tardani, D., 2016. Physical,
chemical and mineralogical evolution of the Tolhuaca geothermal system, southern
Andes, Chile: insights into the interplay between hydrothermal alteration and brittle
deformation. J. Volcanol. Geotherm. Res. 324, 88–104.
Sanci, R., Panarello, H.O., Ostera, H.A., 2010. Flujo de di´oxido de carbono en el flanco
oriental del volc´an Peteroa, Andes del Sur. Revista Mexicana de Ciencias Geol´ogicas
27 v. núm. 2, 2010, p. 225–237 (in Spanish).
Sano, Y., Fischer, T.P., 2013. The analysis and interpretation of noble gases in modern
hydrothermal systems. In: Burnard, P. (Ed.), The Noble Gases As Geochemical
Tracers. Springer Verlag, Berlin Heidelberg, pp. 249–317. https://doi.org/10.1007/
978-3- 642-28836-4_10.
Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gases from island arcs. Chem.
Geol. 119, 265–274.
Sano, Y., Wakita, H., 1988. Helium isotope ratio and heat discharge rate in the Hokkaido
Island, Northeast Japan. Geochem. J. 22, 293–303.
Sano, Y., Williams, S.N., 1996. Fluxes of mantle and subducted carbon along convergent
plate boundaries. Geophys. Res. Lett. 23, 2749–2752.
Sbrana, A., Marianelli, P., Belgiorno, M., Sbrana, M., Ciani, V., 2020. Natural CO2
degassing in the Mount Amiata volcanic–geothermal area. J. Volcanol. Geotherm.
Res. 397, 106852.
Sepulveda, F., Dorsch, K., Lahsen, A., Bender, S., Palacios, C., 2004. The chemical and
isotopic composition of geothermal discharges from the Puyehue-Cord´on Caulle area
(40.5S), Southern Chile. Geothermics 33, 655–673.
Sepúlveda, F., Lahsen, A., Powell, T., 2007. Gas geochemistry of the Cord´on Caulle
geothermal system. South. Chile Geotherm 36 (5), 389–420.
SERNAGEOMIN, 2019. Geoparques Servicio Nacional De Geología y Minería, Chile. htt
p://geachile.sernageomin.cl/.
Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A., Alvarado, G., 2003. Contrasting
volatile systematics of Nicaragua and Costa Rica: insights to C-cycling through
subduction zones. Earth Planet. Sci. Lett. 214 (3–4), 499–513.
Shock, E.L., 1993. Hydrothermal dehydration of aqueous organic compounds. Geochim.
Cosmochim. Acta 57, 3341–3349.
Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability
graphs. J. Geochem. Exp. 3, 129–149.
Sorey, M.L., Colvard, E.M., 1994. Measurements of heat and mass flow from thermal
areas in Lassen volcanic national park, California, 1984-93. Water-Resources
Investigations Report 94-4180-A. https://doi.org/10.3133/wri944180A.
Sortino, F., Inguaggiato, S., Francofonte, S., 1991. Determination of HF, HCl, and total
sulfur in fumarolic fluids by ion chromatography. Acta Vulcanol 1 (1991), 89–91.
Taran, Y., 2009. Geochemistry of volcanic and hydrothermal fluids and volatile budget of
the Kamchatka–Kuril subduction zone. Geochim. Cosmochim. Acta 73 (4),
1067–1094. https://doi.org/10.1016/j.gca.2008.11.020.
Tardani, D., Reich, M., Roulleau, E., Takahata, N., Sano, Y., P´erez-Flores, P., Sanchez-
Alfaro, P., Cembrano, J., Arancibia, G., 2016. Exploring the structural controls on
helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an
intra-arc fault system. Geochim. Cosmochim. Acta 184, 193–211.
Tardani, D., Roulleau, E., Pinti, D.L., P´erez-Flores, P., Daniele, L., Reich, M., Sanchez-
Alfaro, P., Morata, D., Richard, L., 2021. Structural control on shallow
hydrogeochemical processes at Caviahue-Copahue Volcanic Complex (CCVC).
Argent. J. Volcanol. Geotherm. Res. 414, 107228.
Tassi, F., Martinez, C., Vaselli, O., Capaccioni, B., Viramonte, J., 2005. Light
hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio
(northern Chile). App. Geochem. 20 (11), 2049–2062.
Tassi, F., Aguilera, F., Darrah, T., Vaselli, O., Capaccioni, B., Poreda, R.J., Delagado-
Huertas, A., 2010. Fluid geochemistry of hydrothermal systems in the Arica-
Parinacota, Tarapaca and Antofagasta regions (northern Chile). J. Volcanol.
Geotherm. Res. 192 (1–2), 1–15.
Tassi, F., Fiebig, J., Vaselli, O., Nocentini, M., 2012. Origins of methane discharging from
volcanic-hydrothermal, geothermal and cold emissions in Italy. Chem. Geol. 310,
36–48.
Taussi, M., Nisi, B., Pizarro, M., Morata, D., Veloso, E.A., Volpi, G., Vaselli, O.,
Renzulli, A., 2019. Sealing capacity of clay-cap units above the Cerro Pabell´on
hidden geothermal system (northern Chile) derived by soil CO2 flux and temperature
measurements. J. Volcanol. Geotherm. Res. 384, 1–14.
Taussi, M., Nisi, B., Vaselli, O., Maza, S., Morata, D., Renzulli, A., 2021. Soil CO2 and
temperature from a new geothermal area in the Cord´on de inacaliri volcanic
complex (Northern Chile). Geothermics 89, 101961.
Taussi, M., Brogi, A., Liotta, D., Nisi, B., Perrini, M., Vaselli, O., Zambrano, M.,
Zucchi, M., 2022. CO2 and heat energy transport by enhanced fracture permeability
in the Monterotondo Marittimo-Sasso Pisano transfer fault system (Larderello
Geothermal Field, Italy). Geothermics 105, 102531.
Taussi, M., Tardani, D., Tassi, F., Gorini, A., Aguilera, E., Capaccioni, B., Renzulli, A.,
2023a. A conceptual model for the Tufi˜no-Chiles-Cerro Negro (TCCN) geothermal
system (Ecuador-Colombia): new insights into geothermal exploration from
chemical and isotopic composition of hydrothermal fluids. J. Geochem. Exp. 249,
107214.
Taussi, M., Nisi, B., Brogi, A., Liotta, D., Zucchi, M., Venturi, S., Cabassi, J., Boschi, G.,
Ciliberti, M., Vaselli, O., 2023b. Deep regional fluid pathways in an extensional
setting: the role of transfer zones in the hot and cold degassing areas of the larderello
16
geothermal system (Northern Apennines, Italy). Geochem., Geophy., Geosys. 24,
e2022GC010838.
Vargas-Payera, S., Martínez-Reyes, A., Ejderyan, O., 2020. Factors and dynamics of the
social perception of geothermal energy: case study of the Tolhuaca exploration
project in Chile. Geothermics 88, 101907.
Vaselli, O., Tassi, F., Montegrossi, G., Capaccioni, B., Giannini, L., 2006. Sampling and
analysis of volcanic gases. Acta Volcanol 18, 65–76.
Vaselli, O., Tassi, F., Duarte, E., Fernandez, E., Poreda, R.J., Delagado-Huertas, A., 2010.
Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to
2008. Bull. Volcanol. 72, 397–410.
Vaselli, O., Tassi, F., Fischer, T.P., Tardani, D., Fern´andez, E., del Mar Martínez, M., de
Moor, M.J., Bini, G., 2019. The last eighteen years (1998–2014) of fumarolic
degassing at the Po´as Volcano (Costa Rica) and renewal activity. In: Tassi, F.,
Vaselli, O., Mora-Amador, R.A. (Eds.), Po´as Volcano: The Pulsing Heart of Central
America Volcanic Zone, 2019. Springer International Publishing, Switzerland,
pp. 235–260.
Veloso, E., Tardani, D., Elizalde, D., Godoy, B., S´anchez-Alfaro, P., Aron, F., Reich, M.,
Morata, D., 2020. A review of the geodynamic constraints on the development and
evolution of geothermal systems in the Central Andean Volcanic Zone (18–28◦Lat.S).
Int. Geol. Rev. 62, 1294–1318.
Venturi, S., Tassi, F., Magi, F., Cabassi, J., Ricci, A., Capecchiacci, F., Caponi, C., Nisi, B.,
Vaselli, O., 2019. Carbon isotopic signature of interstitial soil gases reveals the
potential role of ecosystems in mitigating geogenic greenhouse gas emissions: case
studies from hydrothermal systems in Italy. Sci. Tot. Envir. 655, 887–898.
Vidal, J., Patrier, P., Beaufort, D., Maza, S., Rivera, G., Volpi, G., Morata, D., 2023.
Structural control of the graben fault on hydrothermal alteration in the Cerro
Pabell´on geothermal system (Andean Cordillera, Northern Chile). Geother. Ener. 11,
18.
Werner, C., Brantley, S., Boomer, K., 2000. CO2 emissions related to the Yellowstone
volcanic system, Statistical sampling, total degassing, and transport mechanisms.
J. Geophys. R. 105 (B5), 10831–10846.
Werner, C.A., Hochstein, M.P., Bromley, C.J., 2004. CO2-flux of steaming ground at
Karapiti, Wairakei. In: Proceedings of the 26th New Zealand Geothermal Workshop
2004, pp. 59–64.
Werner, C., Cardellini, C., 2006. Comparison of carbon dioxide emissions with fluid
upflow, chemistry, and geologic structures at the Rotorua geothermal system. New
Zealand. Geotherm 35, 221–238.
Wilmarth, M., Stimac, J., 2015. Power density in geothermal fields. In: Proceedings
World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
Wrage, J., Tardani, D., Reich, M., Daniele, L., Arancibia, G., Cembrano, J., S´anchez-
Alfaro, P., Morata, D., P´erez-Moreno, R., 2017. Geochemistry of thermal waters in
the Southern Volcanic Zone, Chile – Implications for structural controls on
geothermal fluid composition. Chem. Geol. 466, 545–561.
Zarrouk, S.J., Moon, H., 2014. Efficiency of geothermal power plants: a worldwide
review. Geothermics. 51, 142–153.
and isotope characteristics of the Chachimbiro geothermal fluids (Ecuador).
Geothermics 34, 495–517.
Agusto, M., Tassi, F., Caselli, A., Vaselli, O., Rouwet, D., Capaccioni, B., Caliro, S.,
Chiodini, G., Darrah, T., 2013. Gas geochemistry of the magmatic-hydrothermal
fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina). J. Volcanol.
Geotherm. Res. 257, 44–56.
All`egre, C.J., Moreira, M., Staudacher, T., 1995. 4He/3He dispersion and mantle
convection. Geophys. Res. Lett. 22, 2325–2328.
Alonso, M., Padr´on, E., Sumino, H., Hern´andez, P.A., Meli´an, G.V., Asensio-Ramos, M.,
Rodríguez, F., Padilla, G., García-Merino, M., Amonte, C., P´erez, N.M., 2019. Heat
and Helium-3 Fluxes from Teide Volcano, Canary Islands. Spain Geofuids 2019, 12.
https://doi.org/10.1155/2019/3983864. Article 3983864.
Aravena, D., Mu˜noz, M., Morata, D., Lahsen, A., Parada, M.A., Dobson, P., 2016.
Assessment of high enthalpy geothermal resources and promising areas of Chile.
Geothermics 59, 1–13. https://doi.org/10.1016/j.geothermics.2015.09.001.
Arn`orsson, S., Gunnlaugsson, E., 1985. New gas geothermometers for geothermal
exploration-Calibration and application. Geochim. Cosmochim. Acta 49, 1307–1325.
Barcelona, H., Senger, M., Yagupsky, D, 2021. Resource assessment of the Copahue
geothermal field. Geothermics 90, 101987.
Batista Cruz, R.Y., Rizzo, A.L., Grassa, F., Bernard Romero, R., Gonz´alez Fern´andez, A.,
Kretzschmar, T.G., G´omez-Arias, E, 2019. Mantle Degassing Through Continental
Crust Triggered By Active faults: The case of the Baja California Peninsula, 20.
Mexico. Geochemistry, Geophy., Geosys. https://doi.org/10.1029/2018GC007987.
Benavente, O., Tassi, F., Reich, M., Aguilera, F., Capecchiacci, F., Gutierrez, F.,
Vaselli, O., Rizzo, A., 2016. Chemical and isotopic features of cold and thermal fluids
discharged in the Southern Volcanic Zone between 32.5◦S and 36◦S: insights into the
physical and chemical processes controlling fluid geochemistry in geothermal
systems of Central Chile. Chem. Geol 420, 97–113.
Cabassi, J., Venturi, S., Di Bennardo, F., Nisi, B., Tassi, F., Magi, F., Ricci, A., Picchi, G.,
Vaselli, O., 2021. Flux measurements of gaseous elemental mercury (GEM) from the
geothermal area of “Le Biancane” natural park (Monterotondo Marittimo, Grosseto,
Italy): biogeochemical processes controlling GEM emission. J. Geochem. Explor.
228, 106824.
Capaccioni, B., Tassi, F., Renzulli, A., Vaselli, O., Menichetti, M., Inguaggiato, S., 2014.
Geochemistry of thermal fluids in NW Honduras: new perspectives for exploitation
of geothermal areas in the southern Sula graben. J. Volcanol. Geother. Res 280,
40–52.
Cappetti, G., Giorgi, N., Arias, A., Volpi, G., Rivera, G., Cei, M., Fedeli, M., Di Marzio, G.,
Pasri, M., Massei, S., Baccarin, F., 2021. The Cerro Pabell´on geothermal project
(Chile): from surface exploration to energy production. In: Proceedings World
Geothermal Congress 2020, Reykjavik, Iceland, May 2021.
Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulation to
CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108
(B9), 2425. https://doi.org/10.1029/2002JB002165.
Cembrano, J., Lara, L., 2009. The link between volcanism and tectonics in the southern
volcanic zone of the Chilean Andes: a review. Tectonophysics. 471 (1–2), 96–113.
https://doi.org/10.1016/j.tecto.2009.02.038.
Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4
system. Geochim. Cosmochim. Acta 62 (15), 2673–2687.
Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements
in volcanic and geothermal areas. Appl. Geochem. 13 (5), 543–5552. https://doi.
org/10.1016/S0883-2927(97)00076-0.
Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., 2005. Carbon
dioxide diffuse degassing and estimation of heat release from volcanic and
hydrothermal systems. J. Geophys. Res. 110, B08204. https://doi.org/10.1029/
2004JB003542.
Chiodini, G., Baldini, A., Barberi, F., Carapezza, M.L., Cardellini, C., Frondini, F.,
Granieri, D., Ranaldi, M., 2007. Carbon dioxide degassing at Latera caldera (Italy):
geothermal reservoir and evaluation of its potential energy. J. Geophys. Res. 112
(17), B12204. https://doi.org/10.1029/2006JB004896.
Chiodini, G., Caliro, S., Cardellini, C., Avino, R., Granieri, D., Schmidt, A., 2008. Carbon
isotopic composition of soil CO2 efflux, a powerful method to discriminate different
sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth. Planet.
Sci. Lett. 274, 372–379. https://doi.org/10.1016/j. epsl.2008.07.051.
Chiodini, G., Cardellini, C., Lamberti, M.C., Agusto, M., Caselli, A., Liccioli, C.,
Tamburello, G., Tassi, F., Vaselli, O., Caliro, S., 2015. Carbon dioxide diffuse
emission and thermal energy release from hydrothermal systems at
Copahue–Caviahue Volcanic Complex (Argentina). J. Volcanol. Geother. Res 304,
294–303. https://doi.org/10.1016/j. jvolgeores.2015.09.007.
Cinti, D., Tassi, F., Procesi, M., Bonini, M., Capecchiacci, F., Voltattorni, N., Vaselli, O.,
Quattrocchi, F., 2014. Fluid geochemistry and geothermometry in the unexploited
geothermal field of the Vicano–Cimino Volcanic District (Central Italy). Chem. Geol
371, 96–114. https://doi.org/10.1016/j.chemgeo.2014.02.005.
CNE, 2023. Comisi´on Nacional de Energía. Reporte ERNC 82. Junio 2023 (in Spanish).
Collignon, M., Cardellini, C., Duprat-Oualid, S., Hammer, Ø., Chiodini, G.,
Vandemeulebrouck, J., Gonzalez-Vidal, D., Espinoza, A., Tassara, A., Ruch, J., 2021.
Carbon dioxide diffuse emission at the Tolhuaca hydrothermal system (Chile)
controlled by tectonics and topography. J. Volcanol. Geother. Res. 417, 107316.
D’Amore, F., Panichi, C., 1980. Evaluation of deep temperatures of hydrothermal
systems by a new gas geothermometer. Geochim. Cosmochim. Acta 44, 549–556.
Daniele, L., Taucare, M., Viguier, B., Arancibia, G., Aravena, D., Roquer, T.,
Sepúlveda, J., Molina, E., Delgado, A., Mu˜noz, M., Morata, D., 2020. Exploring the
shallow geothermal resources in the Chilean Southern Volcanic Zone: insight from
the Liqui˜ne thermal springs. J. Geochem. Explor. 218, 106611.
David, M., 1977. Geostatistical Ore Reserve Estimation. Elsevier Science, New York,
p. 384.
Dawson, G.B., 1964. The nature and assessment of heat flow from hydrothermal areas.
New Zealand J. Geol. Geophy 7, 155–171.
Dereinda F.H., 2008. CO2 emissions from the Krafla Geothermal Area, Iceland, United
Nations University Geothermal Training Programme, Reports 2008.
Di Piazza, A., Rizzo, A.L., Barberi, F., Carapezza, M.L., De Astis, G., Romano, C.,
Sortino, F., 2015. Geochemistry of the mantle source and magma feeding system
beneath Turrialba volcano. Costa Rica. Lithos 232, 319–335.
Dobson, P., Gasperikova, E., Spycher, N., Lindsey, N.J., Rong Guo, T., Shan Chen, W., Hsi
Liu, C., Wang, C.-J., Chen, S.-N., Fowler, A.P.G., 2018. Conceptual model of the
Tatun geothermal system. Taiwan Geotherm. 74, 273–297.
Elío, J., Ortega, M.F., Nisi, B., Mazadiego, L.F., Vaselli, O., Caballero, J., Chac´on, E.,
2016. A multi-statistical approach for estimating the total output of CO2 from diffuse
soil degassing by the accumulation chamber method. Int. J. Greenh. Gas Contr. 47,
351–363.
Fischer, T.P., Chiodini, G., 2015. Volcanic, Magmatic and Hydrothermal Gases. The
Encyclopedia of Volcanoes. Elsevier. https://doi.org/10.1016/B978-0-12-385938-
9.00045-6.
Fischer, T.P., Sturchio, N.C., Stix, J., Arehart, G.B., Counce, D., Williams, S.N., 1997. The
chemical and isotopic composition of fumarolic gases and spring discharges from
Galeras Volcano, Colombia. J. Volcanol. Geother. Res. 77, 229–253.
Fridriksson, T., Bjarni Reyr, K., Halld´or, A., Eygerður, M., Snj´olaug, ´O., Chiodini, G.,
2006. CO2 emissions and heat flow through soil, fumaroles, and steam heated mud
pools at the Reykjanes geothermal area, SW Iceland. Appl. Geochem. 21 (9),
1551–1569. https://doi.org/10.1016/j.apgeochem.2006.04.006.
Giammanco, S., Meli´an, G., Neri, M., Hern´andez, P.A., Sortino, F., Barrancos, J.,
L´opez, M., Pecoraino, G., P´erez, N.M., 2016. Active tectonic features and structural
dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil
temperature surveying. J. Volcanol. Geother. Res. 311, 79–98. https://doi.org/
10.1016/j.jvolgeores.2016.01.004.
Giggenbach, W.F., Goguel, R.L., 1989. Collection and analysis of geothermal and
volcanic water and gas discharges. DSIR Chem 2401. Report.
Giggenbach, W.F., Poreda, R.J., 1993. Helium isotopic and chemical composition of
gases from volcanic hydrothermal systems in the Philippines. Geothermics 22,
369e–380e.
Giggenbach, W.F., Tedesco, D., Sulistiyo, Y., Caprai, A., Cioni, R., Favara, R., Fischer, T.
P., Hirabayashi, J.-I., Korzhinsky, M., Martini, M., Menyailov, I., Shinohara, H.,
2001. Evaluation of results from the fourth and fifth IAVCEI field workshops on
volcanic gases, Vulcano island, Italy and Java. Indon. J. Volcanol. Geother. Res. 108
(1–4), 157–172.
Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas
samples. Bulletin Volcanolog. Vol 39, 132–145.
Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44 (12),
2021–2032.
Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas
discharges from White Island, New Zealand. Appl. Geochem. 2 (2), 143–161.
Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca
geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765.
Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. Appl.
Geochem. Geother. Reserv. Develop. 119–144. Ed Franco D’Amore. Unitar/UNDP.
Gilbert, J., Stasiuk, M., Lane, S., Adam, C., Murphy, M., Sparks, R., Naranjo, J., 1996.
Non-explosive, constructional evolution of the ice-filled caldera at Volc´an Sollipulli,
Chile. Bull. Volcanol. 58, 67–83.
Giudetti, G., Tempesti, L., 2021. First geochemical data from Cerro Pabell´on geothermal
project (Apacheta Region, Chile). In: Proceedings World Geothermal Congress 2020,
Reykjavik, Iceland, May 2021.
Granieri, D., Mazzarini, F., Cerminara, M., Calusi, B., Scozzari, A., Menichini, M.,
Lelli, M., 2023. Shallow portion of an active geothermal system revealed by
multidisciplinary studies: the case of Le Biancane (Larderello, Italy). Geothermics
108, 102616. https://doi.org/10.1016/j.geothermics.2022.102616.
Grassa, F., Capasso, G., Oliveri, Y., Sollami, A., Carreira, P., Carvalho, M.R., Marques, J.
M., Nunes, J.C., 2010. Nitrogen isotopes determination in natural gas: analytical
method and first results on magmatic, hydrothermal and soil gas samples. Isotop.
Environ. Heal. Stud. 46 (2), 141–155.
Harvey, M.C., Rowland, J.V., Chiodini, G., Rissmann, C., Bloomberg, S., Hern´andez, P.A.,
Mazot, A., Viveiros, F., Werner, C., 2015. Heat flux from magmatic hydrothermal
systems related to availability of fluid recharge. J. Volcanol. Geotherm. Res. 302,
225–236. https://doi.org/10.1016/j.jvolgeores.2015.07.003.
Hauser A., 1997. Register and characterization of mineral and thermal springs of Chile,
50. Servicio Nacional de Geología y Minería, Santiago, Chile 90 (in Spanish).
Hern´andez, P.A., P´erez, N.M., Fridriksson, T., Jolie, E., Ilyinskaya, E., Th´arhallsson, A.,
´Ivarsson, G., Gíslason, G., Gunnarsson, I., J´onsson, B., Padr´on, E., Meli´an, G.,
Mori, T., Notsu, K., 2012. Diffuse volcanic degassing and thermal energy release
from Hengill volcanic system, Iceland. Bull. Volcanol 74, 2435–2448. https://doi.
org/10.1007/s00445-012-0673-2.
Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at
subduction zones. Rev. Miner. Geochem. 47 (1), 319–370.
IPCC, 2023. Synthesis Report for the Sixth Assessment Report during the Panel’s 58th
Session held in Interlaken, Switzerland from 13 - 19 March 2023.
J´acome-Paz, M.P., P´erez-Z´arate, D., Prol-Ledesma, R.M., Rodríguez-Díaz, A.A., Estrada-
Murillo, A.M., Gonz´alez-Romo, I.A., Maga˜na-Torres, E., 2019. Two New Geothermal
Prospects in the Mexican Volcanic Belt: La Escalera and Agua Caliente – Tzitzio
geothermal Springs, 80. Geothermics, Michoac´an, M´exico, pp. 44–55.
Jentsch, A., Jolie, E., Jones, D.G., Taylor-Curran, H., Peiffer, L., Zimmer, M., Lister, B.,
2020. Magmatic volatiles to assess permeable volcano-tectonic structures in the Los
Humeros geothermal field. Mexico. J. Volcanol. Geotherm. R. 394, 106820.
Lachowycz, S., Pyle, D., Gilbert, J., Mather, T., Mee, K., Naranjo, J., Hobbs, L., 2015.
Glaciovolcanism at Volc´an Sollipulli, southern Chile: lithofacies analysis and
interpretation. J. Volcanol. Geotherm. R. 303, 59–78.
Lahsen, A., 1988. Chilean geothermal resources and their possible utilization.
Geothermics 17, 401–410. https://doi.org/10.1016/0375-6505(88)90068-5.
Lahsen, A., Rojas, J., Morata, D., Aravena, D., 2015. Geothermal exploration in Chile:
country update. In: Proceedings of the World Geothermal Congress, Melbourne,
Australia, 19 - 25 April 2015.
Lamberti, M.C., Agusto, M., Llano, J., Nogu´es, V., Venturi, S., V´elez, M.L., Albite, J.M.,
Yiries, J., Chiodini, G., Cardellini, C., Tassi, F., García, S., Nu˜nez, N., S´anchez, H.,
G´omez, M., 2021a. Soil CO2 flux baseline in Planch´on–Peteroa Volcanic Complex,
Southern Andes, Argentina – Chile. J. South Am. Earth. Sci. 105, 102930.
Lamberti, M.C., Chiodi, A., Agusto, M., Filipovich, R., Massenzio, A., B´aez, W., Tassi, F.,
Vaselli, O., 2021b. Carbon dioxide diffuse degassing as a tool for computing the
thermal energy release at Cerro blanco geothermal system, Southern Puna (NW
Argentina). J. South Am. Earth. Sci. 105, 102833.
Lemus M., Honores C., 2019. Favorabilidad geot´ermica de la cordillera Principal de la regi
´on de La Araucanía. Servicio Nacional de Geología y Minería, Informe Registrado
IR- 19-75 178 p. (2 mapas escala 250.000. Santiago).
Lopez, T., Aguilera, F., Tassi, F., De Moor, J.M., Bobrowski, N., Aiuppa, A.,
Tamburello, G., Rizzo, A.L., Liuzzo, M., Viveiros, F., Cardellini, C., Silva, C.,
Fischer, T., Jean-Baptiste, P., Kazayaha, R., Hidalgo, S., Malowany, K., Lucic, G.,
Bagnato, E., Bergsson, B., Reath, K., Liotta, M., Carn, S., Chiodini, G., 2018. New
insights into the magmatic-hydrothermal system and volatile budget of Lastarria
volcano, Chile: integrated results from the 2014 IAVCEI CCVG 12th volcanic gas
workshop. Geosphere 14 (3), 1–25.
L´opez-Escobar, L., Cembrano, J., Moreno, H., 1995. Geochemistry and tectonics of the
Chilean Southern andes basaltic quaternary volcanism (37-46 S). Andean Geol 22
(2), 219–234.
Lund, J.W., Huttrer, G.W., Toth, A.N., 2022. Characteristics and trends in geothermal
development and use, 1995 to 2020. Geothermics 105, 102522. https://doi.org/
10.1016/j.geothermics.2022.102522.
Lund, J.W., Toth, A.N., 2021. Direct utilization of geothermal energy 2020 worldwide
review. Geothermics 90, 101915. https://doi.org/10.1016/j.
geothermics.2020.101915.
Maza, S.N., Collo, G., Morata, D., Taussi, M., Vidal, J., Mattioli, M., Renzulli, A., 2021.
Active and fossil hydrothermal zones of the Apacheta volcano: insights for the Cerro
Pabell´on hidden geothermal system (Northern Chile). Geothermics. 96, 102206.
Mesa de, Geotermia, 2018. Rol De La Geotermia En El Desarrollo De La Matriz El´ectrica
Chilena. Ministerio de Energía, Chile, p. 66. http://www.minenergia.cl/mesageotermia.
Minissale, A., Corti, G., Tassi, F., Darrah, T.H., Vaselli, O., Montanari, D.,
Montegrossi, G., Yirgu, G., Selmo, E., Teclu, A., 2017. Geothermal potential and
origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian
Rift, East Africa. J. Volcanol. Geotherm. R. 336, 1–18.
Minissale, A., 2018. A simple geochemical prospecting method for geothermal resources
in flat areas. Geothermics 72, 258–267.
Montanaro, C., Ray, L., Cronin, S.J., Calibugan, A., Rott, S., Bardsley, C., Scheu, B., 2023.
Linking top and subsoil types, alteration and degassing processes at Rotokawa
geothermal field, New Zealand. Front. Earth. Sci. (Lausanne) 10, 1067012. https://
doi.org/10.3389/feart.2022.1067012.
Morata, D., Aravena, D., Lahsen, A., Mu˜noz, M., Valdenegro, P., 2021. Chile Up-Date: the
first south american geothermal power plant after one century of exploration. In:
Proceedings World Geothermal Congress 2020, Reykjavik, Iceland, May 2021.
Morata, D., Gallardo, R., Maza, S., Arancibia, G., L´opez-Contreras, C., Mura, V.,
Cannatelli, C., Reich, M., 2023. Hydrothermal alteration in the Nevados de Chill´an
geothermal system, southern andes: multidisciplinary analysis of a fractured
reservoir. Minerals 13, 722.
Moreno-Gonzalez, R., 2022. Vegetation responses to past volcanic disturbances at the
Araucaria araucana forest-steppe ecotone in northern Patagonia. Ecol. Evol 12 (10),
e9362. https://doi.org/10.1002/ece3.9362.
Moya, D., Ald`as, C., Kaparaju, P., 2018. Geothermal energy: power plant technology and
direct heat applications. Renew. Sustain. Ener. Rev. 94, 889–901. https://doi.org/
10.1016/j.rser.2018.06.047.
Munoz-Saez, C., Perez-Nu˜nez, C., Martini, S., Vargas-Barrera, A., Reich, M., Morata, D.,
Manga, M., 2020. The Alpehue geyser field, Sollipulli Volcano, Chile. J. Volcanol.
Geotherm. R. 406 (2020), 107065.
Naranjo, J., Moreno, H., Empar´an, C., Murphy, M., 1993. Volcanismo explosivo reciente
en la caldera del volc´an Sollipulli, Andes del Sur (39◦S). Revista Geol´ogica de Chile
Vol. 20 (2), 167–191.
NDC - Gobierno de Chile, 2020. Contribuci´on Determinada a Nivel Nacional (NDC) De
Chile actualizaci´on 2020. In Spanish.
Ostapenko, S.V., Spektor, S.V., Netesov, Y.P., 1998. San Jacinto–Tizate geothermal field,
Nicaragua: exploration and conceptual model. Geothermics 27, 361–378.
Pereira, M.L., Matias, D., Viveiros, F., Moreno, L., Silva, C., Zanon, V., Uchˆoa, J., 2022.
The contribution of hydrothermal mineral alteration analysis and gas
geothermometry for understanding high-temperature geothermal fields – the case of
Ribeira Grande geothermal field. Azores. Geotherm 105, 102519.
P´erez-Estay, N., Molina-Piernas, E., Roquer, T., Aravena, D., Araya Vargas, J., Morata, D.,
Arancibia, G., Valdenegro, P., García, K., Elizalde, D., 2022. Shallow anatomy of
hydrothermal systems controlled by the Liqui˜ne-Ofqui fault system and the andean
transverse faults: geophysical imaging of fluid pathways and practical implications
for geothermal exploration. Geothermics 104, 102435.
P´erez-Flores, P., Cembrano, J., S´anchez-Alfaro, P., Veloso, E., Arancibia, G., Roquer, T.,
2016. Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting:
insights from the northern termination of the Liqui˜ne–Ofqui fault System. Chile.
Tectonophy. 680, 192–210.
Pinti, D.L., Castro, M.C., L´opez-Hern´andez, A., Hern´andez Hern´andez, M.A., Richard, L.,
Hall, C.M., Shouakar-Stash, O., Flores-Armenta, M., Rodríguez-Rodríguez, M.H.,
2019. Cerro Prieto geothermal field (Baja California, Mexico) – A fossil system?
Insights from a noble gas study. J. Volc. Geoth. Res. 371, 32–45.
Powell, T., 2000. A review of exploration gas geothermometry. In: Proceedings, Twenty-
Fifth Workshop on. Geothermal Reservoir Engineering Stanford University, Stanford,
California. January 24-26, 2000.
Procesi, M., 2014. Geothermal potential evaluation for northern Chile and suggestions
for new energy plans. Energies (Basel) 7, 5444–5459.
Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration
and its relationship to vegetation and climate. Tellus 44B, 81–99.
Revil, A., Finizola, A., Piscitelli, S., Rizzo, E., Ricci, T., Crespy, A., Angeletti, B.,
Balasco, M., Barde Cabusson, S., Bennati, L., Bol´eve, A., Byrdina, S., Carzaniga, N., Di
Gangi, F., Morin, J., Perrone, A., Rossi, M., Roulleau, E., Suski, B., 2008. Inner
structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy)
revealed by high-resolution electric resistivity tomography coupled with selfpotential,
temperature, and CO2 diffuse degassing measurements. J. Geophys. R 113,
B7.
Rissmann, C., Christenson, B., Werner, C., Leybourne, M., Cole, J., Gravley, D., 2012.
Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo
volcanic zone, New Zealand. App. Geochem. 27, 223–239.
Rodrigo-Naharro, J., Nisi, B., Vaselli, O., Lelli, M., Salda˜na, R., Clemente-Jul, C., P´erez
del Villar, L., 2013. Diffuse soil CO2 flux to assess the reliability of CO2 storage in the
Mazarr´on–Ga˜nuelas Tertiary Basin (Spain). Fuel 114, 162–171.
Rogers, G.F.C., Mayhew, Y.R., 1995. Thermodynamic and Transport Properties of Fluids.
Blackwell Publishing Ltd., Oxford (UK).
Rojas, A., Sruoga, P., Lamberti, M.C., Agusto, M., Tondreau, J., Mendoza, N., Daniele, L.,
Morata, D., 2022. Unravelling the hydrothermal system of Laguna del Maule restless
volcanic field, in the Andean Southern Volcanic Zone (36◦ 10′S). J. Volcanol.
Geotherm. Res. 424, 107498.
Roulleau, E., Tardani, D., Sano, Y., Takahata, N., Vinet, N., Bravo, F., Mu˜noz, C.,
Sanchez, J., 2016. New insight from noble gas and stable isotopes of geothermal/
hydrothermal fluids at Caviahue-Copahue Volcanic complex: boiling steam
separation and water-rock interaction at shallow depth. J. Volcanol. Geotherm. Res.
328, 70–83.
Roulleau, E., Bravo, F., Pinti, D.L., Barde-Cabusson, S., Pizarro, M., Tardani, D., de la, Cal
F., 2017. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic
complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and
temperature, self- potential, and helium isotopes. J. Volcanol. Geotherm. Res. 341,
104–118.
Roulleau, E., Tardani, D., Vlastelic, I., Vinet, N., Sanchez, J., Sano, Y., Takahata, N.,
2018. Multi-element isotopic evolution of magmatic rocks from Caviahue-Copahue
Volcanic complex (Chile-Argentina): involvement of mature slab recycled materials.
Chem. Geol. 476, 370–388.
S´anchez, P., P´erez-Flores, P., Arancibia, G., Cembrano, J., Reich, M., 2013. Crustal
deformation effects on the chemical evolution of geothermal systems: the intra-arc
Liqui˜ne– Ofqui fault system, Southern Andes. Int. Geol. Rev. 55 (11), 1384–1400.
Sanchez-Alfaro, P., Sielfeld, G., Van Campen, B., Dobson, P., Fuentes, V., Reed, A.,
Palma-Behnke, R., Morata, D., 2015. Geothermal barriers, policies and economics in
Chile – lessons for the Andes. Renew. Sustain. Ener. Rev. 51, 1390–1401.
Sanchez-Alfaro, P., Reich, M., Arancibia, G., P´erez-Flores, P., Cembrano, J., Driesner, T.,
Lizama, M., Rowland, J., Morata, D., Heinrich, C.A., Tardani, D., 2016. Physical,
chemical and mineralogical evolution of the Tolhuaca geothermal system, southern
Andes, Chile: insights into the interplay between hydrothermal alteration and brittle
deformation. J. Volcanol. Geotherm. Res. 324, 88–104.
Sanci, R., Panarello, H.O., Ostera, H.A., 2010. Flujo de di´oxido de carbono en el flanco
oriental del volc´an Peteroa, Andes del Sur. Revista Mexicana de Ciencias Geol´ogicas
27 v. núm. 2, 2010, p. 225–237 (in Spanish).
Sano, Y., Fischer, T.P., 2013. The analysis and interpretation of noble gases in modern
hydrothermal systems. In: Burnard, P. (Ed.), The Noble Gases As Geochemical
Tracers. Springer Verlag, Berlin Heidelberg, pp. 249–317. https://doi.org/10.1007/
978-3- 642-28836-4_10.
Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gases from island arcs. Chem.
Geol. 119, 265–274.
Sano, Y., Wakita, H., 1988. Helium isotope ratio and heat discharge rate in the Hokkaido
Island, Northeast Japan. Geochem. J. 22, 293–303.
Sano, Y., Williams, S.N., 1996. Fluxes of mantle and subducted carbon along convergent
plate boundaries. Geophys. Res. Lett. 23, 2749–2752.
Sbrana, A., Marianelli, P., Belgiorno, M., Sbrana, M., Ciani, V., 2020. Natural CO2
degassing in the Mount Amiata volcanic–geothermal area. J. Volcanol. Geotherm.
Res. 397, 106852.
Sepulveda, F., Dorsch, K., Lahsen, A., Bender, S., Palacios, C., 2004. The chemical and
isotopic composition of geothermal discharges from the Puyehue-Cord´on Caulle area
(40.5S), Southern Chile. Geothermics 33, 655–673.
Sepúlveda, F., Lahsen, A., Powell, T., 2007. Gas geochemistry of the Cord´on Caulle
geothermal system. South. Chile Geotherm 36 (5), 389–420.
SERNAGEOMIN, 2019. Geoparques Servicio Nacional De Geología y Minería, Chile. htt
p://geachile.sernageomin.cl/.
Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A., Alvarado, G., 2003. Contrasting
volatile systematics of Nicaragua and Costa Rica: insights to C-cycling through
subduction zones. Earth Planet. Sci. Lett. 214 (3–4), 499–513.
Shock, E.L., 1993. Hydrothermal dehydration of aqueous organic compounds. Geochim.
Cosmochim. Acta 57, 3341–3349.
Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability
graphs. J. Geochem. Exp. 3, 129–149.
Sorey, M.L., Colvard, E.M., 1994. Measurements of heat and mass flow from thermal
areas in Lassen volcanic national park, California, 1984-93. Water-Resources
Investigations Report 94-4180-A. https://doi.org/10.3133/wri944180A.
Sortino, F., Inguaggiato, S., Francofonte, S., 1991. Determination of HF, HCl, and total
sulfur in fumarolic fluids by ion chromatography. Acta Vulcanol 1 (1991), 89–91.
Taran, Y., 2009. Geochemistry of volcanic and hydrothermal fluids and volatile budget of
the Kamchatka–Kuril subduction zone. Geochim. Cosmochim. Acta 73 (4),
1067–1094. https://doi.org/10.1016/j.gca.2008.11.020.
Tardani, D., Reich, M., Roulleau, E., Takahata, N., Sano, Y., P´erez-Flores, P., Sanchez-
Alfaro, P., Cembrano, J., Arancibia, G., 2016. Exploring the structural controls on
helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an
intra-arc fault system. Geochim. Cosmochim. Acta 184, 193–211.
Tardani, D., Roulleau, E., Pinti, D.L., P´erez-Flores, P., Daniele, L., Reich, M., Sanchez-
Alfaro, P., Morata, D., Richard, L., 2021. Structural control on shallow
hydrogeochemical processes at Caviahue-Copahue Volcanic Complex (CCVC).
Argent. J. Volcanol. Geotherm. Res. 414, 107228.
Tassi, F., Martinez, C., Vaselli, O., Capaccioni, B., Viramonte, J., 2005. Light
hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio
(northern Chile). App. Geochem. 20 (11), 2049–2062.
Tassi, F., Aguilera, F., Darrah, T., Vaselli, O., Capaccioni, B., Poreda, R.J., Delagado-
Huertas, A., 2010. Fluid geochemistry of hydrothermal systems in the Arica-
Parinacota, Tarapaca and Antofagasta regions (northern Chile). J. Volcanol.
Geotherm. Res. 192 (1–2), 1–15.
Tassi, F., Fiebig, J., Vaselli, O., Nocentini, M., 2012. Origins of methane discharging from
volcanic-hydrothermal, geothermal and cold emissions in Italy. Chem. Geol. 310,
36–48.
Taussi, M., Nisi, B., Pizarro, M., Morata, D., Veloso, E.A., Volpi, G., Vaselli, O.,
Renzulli, A., 2019. Sealing capacity of clay-cap units above the Cerro Pabell´on
hidden geothermal system (northern Chile) derived by soil CO2 flux and temperature
measurements. J. Volcanol. Geotherm. Res. 384, 1–14.
Taussi, M., Nisi, B., Vaselli, O., Maza, S., Morata, D., Renzulli, A., 2021. Soil CO2 and
temperature from a new geothermal area in the Cord´on de inacaliri volcanic
complex (Northern Chile). Geothermics 89, 101961.
Taussi, M., Brogi, A., Liotta, D., Nisi, B., Perrini, M., Vaselli, O., Zambrano, M.,
Zucchi, M., 2022. CO2 and heat energy transport by enhanced fracture permeability
in the Monterotondo Marittimo-Sasso Pisano transfer fault system (Larderello
Geothermal Field, Italy). Geothermics 105, 102531.
Taussi, M., Tardani, D., Tassi, F., Gorini, A., Aguilera, E., Capaccioni, B., Renzulli, A.,
2023a. A conceptual model for the Tufi˜no-Chiles-Cerro Negro (TCCN) geothermal
system (Ecuador-Colombia): new insights into geothermal exploration from
chemical and isotopic composition of hydrothermal fluids. J. Geochem. Exp. 249,
107214.
Taussi, M., Nisi, B., Brogi, A., Liotta, D., Zucchi, M., Venturi, S., Cabassi, J., Boschi, G.,
Ciliberti, M., Vaselli, O., 2023b. Deep regional fluid pathways in an extensional
setting: the role of transfer zones in the hot and cold degassing areas of the larderello
16
geothermal system (Northern Apennines, Italy). Geochem., Geophy., Geosys. 24,
e2022GC010838.
Vargas-Payera, S., Martínez-Reyes, A., Ejderyan, O., 2020. Factors and dynamics of the
social perception of geothermal energy: case study of the Tolhuaca exploration
project in Chile. Geothermics 88, 101907.
Vaselli, O., Tassi, F., Montegrossi, G., Capaccioni, B., Giannini, L., 2006. Sampling and
analysis of volcanic gases. Acta Volcanol 18, 65–76.
Vaselli, O., Tassi, F., Duarte, E., Fernandez, E., Poreda, R.J., Delagado-Huertas, A., 2010.
Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to
2008. Bull. Volcanol. 72, 397–410.
Vaselli, O., Tassi, F., Fischer, T.P., Tardani, D., Fern´andez, E., del Mar Martínez, M., de
Moor, M.J., Bini, G., 2019. The last eighteen years (1998–2014) of fumarolic
degassing at the Po´as Volcano (Costa Rica) and renewal activity. In: Tassi, F.,
Vaselli, O., Mora-Amador, R.A. (Eds.), Po´as Volcano: The Pulsing Heart of Central
America Volcanic Zone, 2019. Springer International Publishing, Switzerland,
pp. 235–260.
Veloso, E., Tardani, D., Elizalde, D., Godoy, B., S´anchez-Alfaro, P., Aron, F., Reich, M.,
Morata, D., 2020. A review of the geodynamic constraints on the development and
evolution of geothermal systems in the Central Andean Volcanic Zone (18–28◦Lat.S).
Int. Geol. Rev. 62, 1294–1318.
Venturi, S., Tassi, F., Magi, F., Cabassi, J., Ricci, A., Capecchiacci, F., Caponi, C., Nisi, B.,
Vaselli, O., 2019. Carbon isotopic signature of interstitial soil gases reveals the
potential role of ecosystems in mitigating geogenic greenhouse gas emissions: case
studies from hydrothermal systems in Italy. Sci. Tot. Envir. 655, 887–898.
Vidal, J., Patrier, P., Beaufort, D., Maza, S., Rivera, G., Volpi, G., Morata, D., 2023.
Structural control of the graben fault on hydrothermal alteration in the Cerro
Pabell´on geothermal system (Andean Cordillera, Northern Chile). Geother. Ener. 11,
18.
Werner, C., Brantley, S., Boomer, K., 2000. CO2 emissions related to the Yellowstone
volcanic system, Statistical sampling, total degassing, and transport mechanisms.
J. Geophys. R. 105 (B5), 10831–10846.
Werner, C.A., Hochstein, M.P., Bromley, C.J., 2004. CO2-flux of steaming ground at
Karapiti, Wairakei. In: Proceedings of the 26th New Zealand Geothermal Workshop
2004, pp. 59–64.
Werner, C., Cardellini, C., 2006. Comparison of carbon dioxide emissions with fluid
upflow, chemistry, and geologic structures at the Rotorua geothermal system. New
Zealand. Geotherm 35, 221–238.
Wilmarth, M., Stimac, J., 2015. Power density in geothermal fields. In: Proceedings
World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
Wrage, J., Tardani, D., Reich, M., Daniele, L., Arancibia, G., Cembrano, J., S´anchez-
Alfaro, P., Morata, D., P´erez-Moreno, R., 2017. Geochemistry of thermal waters in
the Southern Volcanic Zone, Chile – Implications for structural controls on
geothermal fluid composition. Chem. Geol. 466, 545–561.
Zarrouk, S.J., Moon, H., 2014. Efficiency of geothermal power plants: a worldwide
review. Geothermics. 51, 142–153.
Type
article
File(s)![Thumbnail Image]()
Loading...
Name
Tardani et al., Geothermics 2024.pdf
Type
Main Article
Size
21.32 MB
Format
Adobe PDF
Checksum (MD5)
542f060fa582798f78ced6bd6ea71557