Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes
 
  • Details

BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes

Author(s)
Wood, Kieran  
Department of Aerospace Engineering, University of Bristol, Bristol, United Kingdom  
Liu, Emma  
Department of Earth Sciences,University College London, London, United Kingdom  
Richardson, Tom  
Department of Aerospace Engineering, University of Bristol, Bristol, United Kingdom  
Clarke, Robert  
Department of Aerospace Engineering, University of Bristol, Bristol, United Kingdom  
Freer, Jim  
School of Geographical Sciences, University of Bristol, Bristol,United Kingdom  
Aiuppa, Alessandro  
Dipartimento di Scienze dellaTerra e del Mare, University of Palermo, Palermo, Italy  
Giudice, Gaetano  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Bitetto, Marcello  
Dipartimento di Scienze dellaTerra e del Mare, University of Palermo, Palermo, Italy  
Mulina, Kila  
Rabaul Volcanological Observatory, Rabaul, Papua New Guinea  
Itikarai, Ima  
Rabaul Volcanological Observatory, Rabaul, Papua New Guinea  
Language
English
Obiettivo Specifico
4V. Processi pre-eruttivi
6V. Pericolosità vulcanica e contributi alla stima del rischio
1IT. Reti di monitoraggio e sorveglianza
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Frontiers in Robotics and AI  
Issue/vol(year)
/7 (2020)
Publisher
Frontiers
Pages (printed)
549716
Date Issued
2020
DOI
10.3389/frobt.2020.549716
Alternative Location
https://www.frontiersin.org/articles/10.3389/frobt.2020.549716/full
URI
https://www.earth-prints.org/handle/2122/14202
Subjects
04.08. Volcanology  
Subjects

unmanned aircraft sys...

aerial robotic

volcano

plume

Manam

gas sensing

Abstract
Long-range, high-altitude Unoccupied Aerial System (UAS) operations now enable in-situ measurements of volcanic gas chemistry at globally-significant active volcanoes. However, the extreme environments encountered within volcanic plumes present significant challenges for both air frame development and in-flight control. As part of a multi-disciplinary field deployment in May 2019, we flew fixed wing UAS Beyond Visual Line of Sight (BVLOS) over Manam volcano, Papua New Guinea, to measure real-time gas concentrations within the volcanic plume. By integrating aerial gas measurements with ground- and satellite-based sensors, our aim was to collect data that would constrain the emission rate of environmentally-important volcanic gases, such as carbon dioxide, whilst providing critical insight into the state of the subsurface volcanic system. Here, we present a detailed analysis of three BVLOS flights into the plume of Manam volcano and discuss the challenges involved in operating in highly turbulent volcanic plumes. Specifically, we report a detailed description of the system, including ground and air components, and flight plans. We present logged flight data for two successful flights to evaluate the aircraft performance under the atmospheric conditions experienced during plume traverses. Further, by reconstructing the sequence of events that led to the failure of the third flight, we identify a number of lessons learned and propose appropriate recommendations to reduce risk in future flight operations.
Sponsors
This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1)
References
Aiuppa, A., Fischer, T. P., Plank, T., and Bani, P. (2019). CO2 flux emissions
fromthe Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 9:5442.
doi: 10.1038/s41598-019-41901-y
Aiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., et al.
(2007). Forecasting Etna eruptions by real-time observation of volcanic gas
composition. Geology 35:1115. doi: 10.1130/G24149A.1
Bhardwaj, A., Sam, L., Akanksha., Martín-Torres, F. J., and Kumar, R. (2016).
UAVs as remote sensing platform in glaciology: present applications and future
prospects. Rem. Sens. Environ. 175, 196–204. doi: 10.1016/j.rse.2015.12.029
Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C., and Krotkov, N. A. (2017).
A decade of global volcanic SO2 emissions measured from space. Sci. Rep.
7:44095. doi: 10.1038/srep44095
Cassano, J. J. (2013). Observations of atmospheric boundary layer temperature
profiles with a small unmanned aerial vehicle. Antarctic Sci. 26, 205–213.
doi: 10.1017/S0954102013000539
Connor, D. T.,Wood, K.,Martin, P. G., Goren, S.,Megson-Smith, D., Verbelen, Y.,
et al. (2020). Radiological mapping of post-disaster nuclear environments using
fixed-wing unmanned aerial systems: a study from chornobyl. Front. Robot. AI
6:149. doi: 10.3389/frobt.2019.00149
Corrigan, C. E., Roberts, G. C., Ramana, M. V., Kim, D., and Ramanathan, V.
(2008). Capturing vertical profiles of aerosols and black carbon over the Indian
Ocean using autonomous unmanned aerial vehicles. Atmos. Chem. Phys. 8,
737–747. doi: 10.5194/acp-8-737-2008
Darmawan, H.,Walter, T. R., Brotopuspito, K. S., Subandriyo., and Nandaka, I. G.
M. A. (2018). Morphological and structural changes at the Merapi lava dome
monitored in 2012–15 using unmanned aerial vehicles (UAVs). J. Volcanol.
Geothermal Res. 349, 256–267. doi: 10.1016/j.jvolgeores.2017.11.006
de Boer, G., Palo, S., Argrow, B., LoDolce, G., Mack, J., Gao, R.-S., et al. (2016).
The Pilatus unmanned aircraft system for lower atmospheric research. Atmos.
Meas. Techn. 9, 1845–1857. doi: 10.5194/amt-9-1845-2016
de Moor, J. M., Aiuppa, A., Avard, G., Wehrmann, H., Dunbar, N., Muller, C.,
et al. (2016). Turmoil at Turrialba Volcano (Costa Rica): degassing and eruptive
processes inferred from high-frequency gas monitoring. J. Geophys. Res. Solid
Earth 121, 5761–5775. doi: 10.1002/2016JB013150
de Moor, J. M., Stix, J., Avard, G., Muller, C., Corrales, E., Diaz, J. A., et al. (2019).
Insights on hydrothermal-magmatic interactions and eruptive processes at
Poás Volcano (Costa Rica) from high-frequency gas monitoring and drone
measurements. Geophys. Res. Lett. 46, 1293–1302. doi: 10.1029/2018GL0
80301
Detert, M., and Weitbrecht, V. (2015). A low-cost airborne
velocimetry system: proof of concept. J. Hydraul. Res. 53, 532–539.
doi: 10.1080/00221686.2015.1054322
Detweiler, C., Ore, J.-P., Anthony, D., Elbaum, S., Burgin, A., and Lorenz,
A. (2015). Environmental reviews and case studies: bringing unmanned
aerial systems closer to the environment. Environ. Pract. 17, 188–200.
doi: 10.1017/S1466046615000174
Di Stefano, G., Romeo, G., Mazzini, A., Iarocci, A., Hadi, S., and
Pelphrey, S. (2018). The Lusi drone: a multidisciplinary tool
to access extreme environments. Mar. Petrol. Geol. 90, 26–37.
doi: 10.1016/j.marpetgeo.2017.07.006
Edmonds, M. (2008). New geochemical insights into volcanic degassing.
Philos. Trans. R. Soci. A Math. Phys. Eng. Sci. 366, 4559–4579.
doi: 10.1098/rsta.2008.0185
Favalli, M., Fornaciai, A., Nannipieri, L., Harris, A., Calvari, S., and Lormand,
C. (2018). UAV-based remote sensing surveys of lava flow fields: a case
study from Etna’s 1974 channel-fed lava flows. Bull. Volcanol. 80:29.
doi: 10.1007/s00445-018-1192-6
Fischer, T. P., and Aiuppa, A. (2020). AGU centennial grand challenge: volcanoes
and deep carbon global CO2 emissions from subaerial volcanism—
recent progress and future challenges. Geochem. Geophys. Geosyst.
21:e2019GC008690. doi: 10.1029/2019GC008690
Fischer, T. P., Arellano, S., Carn, S., Aiuppa, A., Galle, B., Allard, P., et al. (2019).
The emissions of CO2 and other volatiles from the world’s subaerial volcanoes.
Sci. Rep. 9:18716. doi: 10.1038/s41598-019-54682-1
Fladeland, M., Sumich, M., Lobitz, B., Kolyer, R., Herlth, D., Berthold, R., et al.
(2011). The NASA SIERRA science demonstration programme and the role
of small–medium unmanned aircraft for earth science investigations. Geocarto
Int. 26, 157–163. doi: 10.1080/10106049.2010.537375
Global Volcanism Program (2019). Report on Manam (Papua New Guinea). Bull.
Glob. Volcan. Netw. 44:10. doi: 10.5479/si.GVP.BGVN201902-251020
Greatwood, C., Richardson, T., Freer, J., Thomas, R., MacKenzie, A., Brownlow,
R., et al. (2017). Atmospheric sampling on Ascension Island using multirotor
UAVs. Sensors 17:1189. doi: 10.3390/s17061189
Hill, S. L., and Clemens, P. (2015). “Miniaturization of high spectral spatial
resolution hyperspectral imagers on unmanned aerial systems,” in Next-
Generation Spectroscopic Technologies VIII, Vol. 9482, eds M. A. Druy,
R. A. Crocombe, and D. P. Bannon (SPIE: Baltimore, MD), 345–359.
doi: 10.1117/12.2193706
Immerzeel,W.W., Kraaijenbrink, P. D. A., Shea, J.M., Shrestha, A. B., Pellicciotti,
F., Bierkens, M. F. P., et al. (2014). High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Rem. Sens. Environ. 150,
93–103. doi: 10.1016/j.rse.2014.04.025
James, M. R., Carr, B. B., D’Arcy, F., Diefenbach, A. K., Dietterich,
H. R., Fornaciai, A., et al. (2020). Volcanological applications of
unoccupied aircraft systems(UAS): developments, strategies, and
future challenges. Volcanica 3, 67–114. doi: 10.30909/vol.03.01.
67114
Jimenez, P., Silva, J. P., and Hernandez, J. (2017). “Experimental validation of
unmanned aerial vehicles to tune PID controllers in open source autopilots,” in
Proceedings of the 7th European Conference for Aeronautics and Space Sciences
(Milano).
Jordan, B. R. (2019). Collecting field data in volcanic landscapes using
small UAS (sUAS)/drones. J. Volcanol. Geotherm. Res. 385, 231–241.
doi: 10.1016/j.jvolgeores.2019.07.006
Klemas, V. V. (2015). Coastal and environmental remote sensing from
unmanned aerial vehicles: an overview. J. Coast. Res. 315, 1260–1267.
doi: 10.2112/JCOASTRES-D-15-00005.1
Liu, E. J., Aiuppa, A., Alan, A., Arellano, S., Bitetto,M., Bobrowski, N., et al. (2020).
Aerial strategies advance volcanic gas measurements at inaccessible, strongly
degassing volcanoes. Sci. Adv. (in press). doi: 10.1126/sciadv.abb9103
Liu, E. J., Wood, K., Mason, E., Edmonds, M., Aiuppa, A., Giudice, G., et al.
(2019). Dynamics of outgassing and plume transport revealed by proximal
unmanned aerial system (UAS) measurements at Volcán Villarrica, Chile.
Geochem. Geophys. Geosyst. 20, 730–750. doi: 10.1029/2018GC007692
McGonigle, A. J. S., Aiuppa, A., Giudice, G., Tamburello, G., Hodson, A. J., and
Gurrieri, S. (2008). Unmanned aerial vehicle measurements of volcanic carbon
dioxide fluxes. Geophys. Res. Lett. 35:L06303. doi: 10.1029/2007GL032508
Mercer, J., and Kelman, I. (2010). Living alongside a volcano in Baliau, Papua New
Guinea. Disaster Prev. Manag. 19, 412–422. doi: 10.1108/09653561011070349
Nadeau, P. A., Elias, T., Kern, C., Lerner, A. H., Werner, C. A., Cappos, M., et al.
(2018). “The 2018 eruption of K¯ılauea volcano: tales from a gas perspective,” in
AGU Fall Meeting Abstracts, Vol. 2018, V21B-07 (Washington, DC).
Nagai,M., Chen, T., Shibasaki, R., Kumagai, H., and Ahmed, A. (2009).UAV-Borne
3-D mapping systemby multisensor integration. IEEE Trans. Geosci. Rem. Sens.
47, 701–708. doi: 10.1109/TGRS.2008.2010314
Pajares, G. (2015). Overview and current status of remote sensing applications
based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Rem. Sens. 81,
281–330. doi: 10.14358/PERS.81.4.281
Palfreyman, W. D., and Cooke, R. J. S. (1976). “Eruptive history of Manam
volcano, Papua New Guinea,” in Volcanism in Australasia, ed R. W. Johnson
(Amsterdam: Elsevier), 117–131.
Peng, Z.-R., Wang, D., Wang, Z., Gao, Y., and Lu, S. (2015). A study of vertical
distribution patterns of PM2.5 concentrations based on ambient monitoring
with unmanned aerial vehicles: a case in Hangzhou, China. Atmos. Environ.
123, 357–369. doi: 10.1016/j.atmosenv.2015.10.074
Pering, T. D., Ilanko, T., and Liu, E. J. (2019). Periodicity in volcanic gas plumes: a
review and analysis. Geosciences 9:394. doi: 10.3390/geosciences9090394
Ramana, M. V., Ramanathan, V., Kim, D., Roberts, G. C., and Corrigan, C. E.
(2007). Albedo, atmospheric solar absorption and heating rate measurements
with stacked UAVs. Q. J. R. Meteorol. Soc. 133, 1913–1931. doi: 10.1002/
qj.172
Roberts, T. J., Lurton, T., Giudice, G., Liuzzo, M., Aiuppa, A., Coltelli, M., et al.
(2017). Validation of a novel multi-gas sensor for volcanic HCl alongside H2S
and SO2 at Mt. Etna. Bull. Volcanol. 79:36. doi: 10.1007/s00445-017-1114-z
Schellenberg, B., Richardson, T., Watson, M., Greatwood, C., Clarke, R., Thomas,
R., et al. (2019). Remote sensing and identification of volcanic plumes using
fixed-wing UAVs over Volcán de Fuego, Guatemala. J. Field Robot. 36,
1192–1211. doi: 10.1002/rob.21896
Shinohara, H. (2013). Composition of volcanic gases emitted during repeating
vulcanian eruption stage of Shinmoedake, Kirishima volcano, Japan. Earth
Planets Space 65, 667–675. doi: 10.5047/eps.2012.11.001
Stöcker, C., Eltner, A., and Karrasch, P. (2015). Measuring gullies by synergetic
application of UAV and close range photogrammetry A case study from
Andalusia, Spain. CATENA 132, 1–11. doi: 10.1016/j.catena.2015.04.004
Syahbana, D. K., Kasbani, K., Suantika, G., Prambada, O., Andreas, A. S., Saing,
U. B., et al. (2019). The 2017–19 activity at Mount Agung in Bali (Indonesia):
Intense unrest, monitoring, crisis response, evacuation, and eruption. Sci. Rep.
9:8848. doi: 10.1038/s41598-019-45295-9
Tamburello, G., Aiuppa, A., Kantzas, E. P., McGonigle, A. J. S., and Ripepe, M.
(2012). Passive vs. active degassing modes at an open-vent volcano (Stromboli,
Italy). Earth Planet. Sci. Lett. 359–360, 106–116. doi: 10.1016/j.epsl.2012.09.050
Tamminga, A. D., Eaton, B. C., and Hugenholtz, C. H. (2015). UAS-based remote
sensing of fluvial change following an extreme flood event. Earth Surf. Process.
Landf. 40, 1464–1476. doi: 10.1002/esp.3728
Turner, N. R., Perroy, R. L., and Hon, K. (2017). Lava flow hazard prediction and
monitoring with UAS: a case study from the 2014–2015 P¯ahoa lava flow crisis,
Hawai’i. J. Appl. Volcanol. 6:17. doi: 10.1186/s13617-017-0068-3
Villa, T., Gonzalez, F., Miljievic, B., Ristovski, Z., and Morawska, L.
(2016). An overview of small unmanned aerial vehicles for air quality
measurements: present applications and future prospectives. Sensors 16:1072.
doi: 10.3390/s16071072
Vivoni, E. R., Rango, A., Anderson, C. A., Pierini, N. A., Schreiner-McGraw, A.
P., Saripalli, S., et al. (2014). Ecohydrology with unmanned aerial vehicles.
Ecosphere 5:art130. doi: 10.1890/ES14-00217.1
Werner, C., Fischer, T. P., Aiuppa, A., Edmonds, M., Cardellini, C., Carn,
S., et al. (2019). “Carbon dioxide emissions from subaerial volcanic
regions,” in Deep Carbon (Cambridge: Cambridge University Press), 188–236.
doi: 10.1017/9781108677950.008
Wildmann, N., Mauz, M., and Bange, J. (2013). Two fast temperature sensors for
probing of the atmospheric boundary layer using small remotely piloted aircraft
(RPA). Atmos. Meas. Tech. 6, 2101–2113. doi: 10.5194/amt-6-2101-2013
Woods, A. W. (2010). Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42,
391–412. doi: 10.1146/annurev-fluid-121108-145430
Zweig, C. L., Burgess, M. A., Percival, H. F., and Kitchens, W. M. (2015).
Use of unmanned aircraft systems to delineate fine-scale wetland vegetation
communities.Wetlands 35, 303–309. doi: 10.1007/s13157-014-0612-4
Type
article
File(s)
Loading...
Thumbnail Image
Name

2.69-BVLOS UAS Operations in Highly-Turbulent-frobt.pdf

Size

3.85 MB

Format

Adobe PDF

Checksum (MD5)

a8072f37c7e2943b5860076b42a4db85

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback