Options
Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy
4 results
Now showing 1 - 4 of 4
- PublicationOpen AccessThe environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project(2017-04-20)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates longterm variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard–Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role.231 324 - PublicationRestrictedIntegrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy(2011-04-26)
; ; ; ; ; ;Landi, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Marchetti, E.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy ;La Felice, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Ripepe, M. ;Rosi, M.; Università di Pisa, Pisa, Italy; ; ; ;Samples of scoriae erupted at Stromboli volcano during its persistent strombolian activity were collected between 2005 and 2008. Chemical and mineralogical compositions were obtained on products erupted from the three main crater sectors (SW, Central and NE). Small chemical variations indicate a different degree of evolution coupled with small difference of magma temperature <10°C. Analysis of the acoustic data for the same time period as the scoria sampling, indicates that puffing (a persistent overpressurized bubble degassing) was, on average, mainly observed at the central craters and at times moved to the NE sector. The cross-check of the two independent data sets allowed us to assess correlation between composition of products and puffing activity at vents. The hotter products are always erupted from the vents where puffing occurs indicating that slightly higher temperature can be the expression of an enhanced two-phase bubble flow dynamics.208 23 - PublicationRestrictedTephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations(2011)
; ; ; ; ; ; ; ; ;Bonadonna, C.; Section of Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland ;Genco, R.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy ;Gouhier, M.; Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France ;Pistolesi, M.; Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy ;Cioni, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia ;Alfano, F.; Section of Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland ;Hoskuldsson, A.; Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland ;Ripepe, M.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy; ; ; ; ; ; ; The April–May 2010 eruption of the Eyjafjallajökull volcano (Iceland) was characterized by a nearly continuous injection of tephra into the atmosphere that affected various economic sectors in Iceland and caused a global interruption of air traffic. Eruptive activity during 4–8 May 2010 was characterized based on short-duration physical parameters in order to capture transient eruptive behavior of a long-lasting eruption (i.e., total grain-size distribution, erupted mass, and mass eruption rate averaged over 30 min activity). The resulting 30 min total grain-size distribution based on both ground and Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) satellite measurements is characterized by Mdphi of about 2 and a fine-ash content of about 30 wt %. The accumulation rate varied by 2 orders of magnitude with an exponential decay away from the vent, whereas Mdphi shows a linear increase until about 18 km from the vent, reaching a plateau of about 4.5 between 20 and 56 km. The associated mass eruption rate is between 0.6 and 1.2 × 105 kg s−1. In situ sampling showed how fine ash mainly fell as aggregates of various typologies. About 5 to 9 wt % of the erupted mass remained in the cloud up to 1000 km from the vent, suggesting that nearly half of the ash >7 settled as aggregates within the first 60 km. Particle sphericity and shape factor varied between 0.4 and 1 with no clear correlation to the size and distance from vent. Our experiments also demonstrate how satellite retrievals and Doppler radar grain-size detection can provide a real-time description of the source term but for a limited particle-size range.173 26 - PublicationRestrictedAdventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes(2010)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Finizola, A.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint Denis, La Réunion, France ;Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Deiana, R.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy ;Barde Cabusson, S.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy ;Rossi, M.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy ;Praticelli, N.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy ;Giocoli, A.; Laboratorio di Geofisica, IMAA-CNR, Tito Scalo, Potenza, Italy ;Romano, G.; Tito Scalo, Potenza, Italy ;Delcher, E.; ;Suski, B.; Institut de Géophysique, Université de Lausanne, Lausanne, Switzerland ;Revil, A.; Colorado School of Mines, Illinois St. Golden, Colorado, USA; CNRS-LGIT, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France ;Menny, P.; Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France ;Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia ;Letort, J.; Ecole et Observatoire des Sciences de la Terre, Université de Strasbourg, France ;Peltier, A.; Institut de Physique du Globe de Paris, UMR 7154, Paris, France ;Villasante-Marcos, V.; Instituto Geografico Nacional, Madrid, Spain ;Douillet, G.; Ecole et Observatoire des Sciences de la Terre, Université de Strasbourg, France ;Avard, G.; Department of Geological Sciences, University of Missouri, USA ;Lelli, M.; Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products,mostly lithic blocks, someofwhich impacted the ground as far as down to 200 m a.s.l., about 1.5 kmfaraway fromthe active vents. Two days after the explosion, a newvapouremissionwas discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called “Nel Cannestrà”. This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10–15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow,with a temperature close to thewater boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO2 soil diffuse degassingmeasurements suggest in this sector at slightly lower elevation fromthe block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary downto the block impact crater displayed a flank fluid flowapparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained onMount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the northeastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit.559 30