Options
Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
1 results
Now showing 1 - 1 of 1
- PublicationOpen AccessRecurrent Scattering Network Detects Metastable Behavior in Polyphonic Seismo-Volcanic Signals for Volcano Eruption Forecasting(2022)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We introduce an end-to-end (E2E) deep neural network architecture designed to perform seismo-volcanic monitoring focused on detecting change. Due to the complexity of volcanic processes, this requires a polyphonic detection, segmentation, and classification approach. Through evolving epistemic uncertainty, invoking a Bayesian network strategy, we detect change and demonstrate its significance as an indicator for possible forecasting of eruptions using data from the Bezymianny and Etna volcanoes. Specifically, we propose morphing the scattering transform from previous work into a novel E2E hybrid and recurrent learnable deep scattering network to adapt to multi-scale temporal dependencies from streaming data. The time-dependent scattering is in some sense physics informed, namely, through time–frequency representation (TFR) of the data. At the same time, with a carefully designed deep convolutional LSTM (ConvLSTM) architecture, we learn intra-event, temporal dynamics from the scattering coefficients or features. We verify the effectiveness of transfer learning switching between volcanoes. Our experimental results set a new norm for semi-supervised seismo-volcanic monitoring.129 26