Now showing 1 - 2 of 2
  • Publication
    Restricted
    Color and temperature of the crater lakes at Kelimutu volcano through time
    We investigated the color and temperature of three volcanic crater lakes that co-exist at Kelimutu volcano (Indonesia) using ~ 30 years of Landsat data. These satellite data were obtained through Google Earth Engine. Time series of surface reflectance (visible wavelengths) and brightness temperature above background (thermal infrared wavelengths) were calculated. Color was defined in the RGB (red-green-blue) and HSV (hue-saturation-value) color spaces, and we introduce a visualization concept called “hue stretch” to consistently represent hue through time. These parameters display long-term trends, seasonal cycles and short duration bursts of activity at the lakes. We demonstrate that the color of the lakes are related over a period of months to years and discovered a previously unreported but significant episode around 1997, which included large agglomerations of floating elemental sulfur. Globally speaking, these techniques could reveal trends at any of the ~ 100 crater lakes on active volcanoes. Furthermore, they could apply to any target whose color changes through time (e.g., forests, crops, and non-volcanic water bodies). We have open-sourced the code necessary to perform these analyses.
      196  5
  • Publication
    Restricted
    Volcano-hydrothermal system and activity of Sirung volcano (Pantar Island, Indonesia)
    Sirung is a frequently active volcano located in the remote parts of Western Timor (Indonesia). Sirung has a crater with several hydrothermal features including a crater lake. We present a timeseries of satellite images of the lake and chemical and isotope data from the hyperacid hydrothermal system. The fluids sampled in the crater present the typical features of hyperacidic systems with high TDS, low pH and d34SHSO4 –d34SS0 among the highest for such lakes. The cations concentrations are predominantly controlled by the precipitation of alunite, jarosite, silica phases, native sulfur and pyrite which dominate the shallow portions of the hydrothermal system. These minerals may control shallow sealing processes thought to trigger phreatic eruptions elsewhere. Sparse Mg/Cl and SO4/Cl ratios and lake parameters derived from satellite images suggest gradual increase in heat and gas flux, most likely SO2-rich, prior to the 2012 phreatic eruption. An acidic river was sampled 8 km far from the crater and is genetically linked with the fluids rising toward the active crater. This river would therefore be a relevant target for future remote monitoring purposes. Finally, several wells and springs largely exceeded the World Health Organization toxicity limits in total arsenic and fluoride.
      161  4