Now showing 1 - 7 of 7
  • Publication
    Restricted
    The role of natural solidification paths on REE partitioning between clinopyroxene and melt
    (2014) ; ; ; ; ;
    Scarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Mollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Blundy, J.D.; School of Earth Sciences, University of Bristol,
    ;
    Iezzi, G.; Dipartimento INGEO, Università G. d ’ Annunzio,
    ;
    Tiepolo, M.; C.N.R.-Istituto di Geoscienze e Georisorse, UOS Pavia
    ;
    ; ; ; ;
    We document for the first time the role played by natural solidification paths on the partitioning of rare earth elements (REE) between clinopyroxene and melt. To do this, we investigated the compositional variation of clinopyroxenes formed under increasing cooling rate conditions from core to rim of a dike at Mt. Etna volcano. As the rate of cooling increases, clinopyroxenes are progressively depleted in Si+ Ca+Mg counter-balanced by enrichments in Al+Na+Ti. Consequently, the concentration of REE in clinopyroxene increases due to an increased ease of locally balancing the excess charge at the M2 site as the number of surrounding tetrahedral aluminium atoms increases. Since Aliv in clinopyroxene is a charge-balancing cation for REE, the partition coefficients (DREE) measured at the dike chilled margin are distinctly higher than those from the dike interior. We conclude that, in naturally solidifying magmas, kinetically controlled cation substitution reactions can be treated in terms of the energetics of the various charge-imbalanced configurations. This finding is corroborated by the near-parabolic dependence of DREE on cation radius due to charge-balance mechanisms described by the lattice strain model.
      92  45
  • Publication
    Restricted
    The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth
    (2013) ; ; ; ; ;
    Mollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Blundy, J. D.; University of Bristol
    ;
    Iezzi, G.; Università Chieti
    ;
    Scarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Langone, A.; CNR
    ;
    ; ; ; ;
    We present the variation in trace element partition coefficients measured at the interface between rapidly cooled clinopyroxene crystals and co-existing melts. Results indicate that, as the cooling rate is increased, clinopyroxene crystals are progressively depleted in Si, Ca and Mg counterbalanced by enrichments in Al (mainly tetrahedral Aliv), Na and Ti. Partition coefficients (Ds) for rare earth elements (REE), high field strength elements (HFSE) and transition elements (TE) increase with increasing cooling rate, in response to clinopyroxene compositional variations. The entry of REE into the M2 site is facilitated by a coupled substitution where either Na substitutes for Ca on the M2 site or Aliv substitutes for Si in the tetrahedral site. The latter substitution reflects an increased ease of locally balancing the excess charge at M2 as the number of surrounding Aliv atoms increases. Due to the lower concentration of Ca in rapidly cooled clinopyroxenes, divalent large ion lithophile elements (LILE) on M2 decrease at the expense of monovalent cations. Conversely, higher concentrations of HFSE and TE on the M1 site are facilitated as the average charge on this site increases with the replacement of divalent-charged cations by Alvi. Although crystallization kinetics modify clinopyroxene composition, deviations from equilibrium partitioning are insufficient to change the tendency of a trace element to be compatible or incompatible. Consequently, there are regular relationships between ionic radius, valence of the trace element and D. At both equilibrium and cooling rate conditions, Ds for isovalent cations define parabola-like curves when plotted against ionic radius, consistent with the lattice strain model, demonstrating that the partitioning of trace elements is driven by charge balance mechanisms; cation substitution reactions can be treated in terms of the energetics of the various chargeimbalanced configurations.
      190  41
  • Publication
    Restricted
    Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano
    A peculiar characteristic of the paroxysmal sequence that occurred on March 16, 2013 at the New South East Crater of Mt. Etna volcano (eastern Sicily, Italy) was the eruption of siliceous crustal xenoliths representative of the sedimentary basement beneath the volcanic edifice. These xenoliths are quartzites that occur as subspherical bombs enclosed in a thin trachybasaltic lava envelope. At the quartzite-magma interface a reaction corona develops due to the interaction between the Etnean trachybasaltic magma and the partially melted quartzite. Three distinct domains are observed: (i) the trachybasaltic lava itself (Zone 1), including Al-rich clinopyroxene phenocrysts dispersed in a matrix glass, (ii) the hybrid melt (Zone 2), developing at the quartzite-magma interface and feeding the growth of newly-formed Al-poor clinopyroxenes, and (iii) the partially melted quartzite (Zone 3), producing abundant siliceous melt. These features makes it possible to quantify the effect of magma contamination by siliceous crust in terms of clinopyroxene-melt element partitioning. Major and trace element partition coefficients have been calculated using the compositions of clinopyroxene rims and glasses next to the crystal surface. Zone 1 and Zone 2 partition coefficients correspond to, respectively, the chemical analyses of Al-rich phenocrysts andmatrix glasses, and the chemical analyses of newly-formed Al-poor crystals and hybrid glasses. For clinopyroxenes fromboth the hybrid layer and the lava flow expected relationships are observed between the partition coefficient, the valence of the element, and the ionic radius. However,with respect to Zone 1 partition coefficients, values of Zone 2 partition coefficients show a net decrease for transition metals (TE), highfield strength elements (HFSE) and rare earth elements including yttrium(REE+Y), and an increase for large ion lithophile elements (LILE). This variation is associated with coupled substitutions on theM1, M2and T sites of the type M1(Al, Fe3+)+TAl=M2(Mg, Fe2+)+TSi. The different incorporation of trace elements into clinopyroxenes of hybrid origin is controlled by cation substitution reactions reflecting local charge-balance requirements. According to the lattice strain theory, simultaneous cation exchanges across the M1,M2, and T sites have profound effects on REE+Y and HFSE partitioning. Conversely, both temperature and melt composition have only a minor effect when the thermal path of magma is restricted to ~70 °C and the value of non-bridging oxygens per tetrahedral cations (NBO/T) shifts moderately from 0.31 to 0.43. As a consequence, Zone 2 partition coefficients for REE+Y and HFSE diverge significantly fromthose derived for Zone 1, accounting for limited cation incorporation into the newly-formed clinopyroxenes at the quartzite-magma interface.
      264  7
  • Publication
    Restricted
    A review of the lattice strain and electrostatic effects on trace element partitioning between clinopyroxene and melt: Applications to magmatic systems saturated with Tschermak-rich clinopyroxenes
    The purpose of this review study is to reappraise in a more comprehensive form the thermodynamic principles behind the partitioning of trace elements between clinopyroxene and melt. The original corollary is that the partitioning energetics controlling the crystal-melt exchange are described by two distinct but complementary contributions: ΔGpartitioning = ΔGstrain + ΔGelectrostatic. ΔGstrain is the excess of strain energy quantifying the elastic response of the crystallographic site to insertion of trace cations with radius different from that of the major cation at the site. ΔGelectrostatic is the excess of electrostatic energy requiring that an electrostatic energy penalty is paid when a trace cation entering the lattice site without strain has charge different from that of the resident cation. Lattice strain and electrostatic parameters for different isovalent groups of cations hosting the same lattice site from literature have been discussed in comparison with new partitioning data measured between Tschermak-rich clinopyroxenes and a primitive phonotephritic melt assimilating variable amounts of carbonate material. Through such a comparatively approach, we illustrate that the type and number of trace cation substitutions are controlled by both charge-balanced and -imbalanced configurations taking place in the structural sites of Tschermak-rich clinopyroxenes. A virtue of this complementary relationship is that the control of melt composition on the partitioning of highly charged cations is almost entirely embodied in the crystal chemistry and structure, as long as these crystallochemical aspects are the direct expression of both ΔGstrain and ΔGelectrostatic. A size mismatch caused by cation substitution is accommodated by elastic strain in the surrounding lattice of clinopyroxene, whereas the charge mismatch is enabled via increasing amounts of charge-balancing Tschermak components, as well as the electrostatic work done on transferring the trace cations from melt to crystallographic sites, and vice versa. The influence of the melt chemistry on highly-charged (3+ and 4+) cation partitioning is greatly subordinate to the lattice strain and electrostatic energies of substitutions, in agreement with the thermodynamic premise that both these energetic quantities represent simple-activity composition models for the crystal phase. The various charge-balanced and -imbalanced configurations change principally with aluminium in tetrahedral coordination and the clinopyroxene volume change produced by heterovalent cation substitutions. In contrast, for low-charged (1+ and 2+) cations, the role of melt chemistry cannot be properly deconvoluted from the structural changes of the crystal lattice. The incorporation of these cations into the clinopyroxene lattice depends on the number of structural sites critically important to accommodating network-modifying cations in the melt structure, implying that the partitioning energetics of monovalent and divalent cations are strictly controlled by both crystal and melt properties. We conclude that the competition between charge-balanced and charge-imbalanced substitutions may selectively change the ability of trace elements to be compatible or incompatible in the clinopyroxene structure, with important ramifications for the modeling of natural igneous processes in crustal magma reservoirs which differentiate under closed- and open-system conditions.
      67  2
  • Publication
    Restricted
    An integrated P-T-H2O-lattice strain model to quantify the role of clinopyroxene fractionation on REE+Y and HFSE patterns of mafic alkaline magmas: Application to eruptions at Mt. Etna
    A correct description and quantification of the geochemical behaviour of REE+Y (rare earth elements and Y) and HFSE (high field strength elements) is a key requirement for modeling petrological and volcanological aspects of magma dynamics. In this context, mafic alkaline magmas (MAM) are characterized by the ubiquitous stability of clinopyroxene from mantle depths to shallow crustal levels. On one hand, clinopyroxene incorporates REE+Y and HFSE at concentration levels that are much higher than those measured for olivine, plagioclase, and magnetite. On the other hand, the composition of clinopyroxene is highly sensitive to variations in pressure,temperature, and melt-water content, according to exchange-equilibria between jadeite and melt, and between jadeite/Ca-Tschermak and diopside-hedenbergite. As a consequence, the dependence of the partition coefficient on the physicochemical state of the system results in a variety of DREE+Y and DHFSE values that are sensitive to the magmatic conditions at which clinopyroxenes nucleate and grow. In order to better explore magma dynamics using clinopyroxene chemical changes, an integrated P-T-H2Olattice strain model specific to MAM compositions has been developed. The model combines a set of refined clinopyroxene-based barometric, thermometric and hygrometric equations with thermodynamically-derived expressions for the lattice strain parameters, i.e., the strain-free partition coefficient (D0), the site radius (r0), andthe effective elastic modulus (E). Through this approach, it is found that the incorporation of REE+Y and HFSE into M2 and M1 octahedral sites of clinopyroxene is determined by a variety of physicochemical variables that may or may not change simultaneously during magma differentiation. The applicability of the P-T-H2O-lattice strain model to natural environments has been verified using clinopyroxene-melt pairs from a great number of volcanic eruptions at Mt. Etna volcano (Sicily, Italy). DREE+Y and DHFSE values recovered by the model have been used as input data to quantify fractional crystallization processes in natural MAM compositions. Results from calculation illustrate that the concentration of REE+Y and HFSE in the magma is primary controlled by the geochemical evolution of clinopyroxene in terms of major cation exchange-equilibria and trace cation lattice strain properties.
      83
  • Publication
    Restricted
    Trace element partitioning between clinopyroxene and trachy-phonolitic melts: A case study from the Campanian Ignimbrite (Campi Flegrei, Italy)
    The partitioning of trace elements between crystals and melts provides an important petrogenetic tool for understanding magmatic processes. We present trace element partition coefficients measured between clinopyroxene phenocrysts and trachy-phonolitic magmas at the Campi Flegrei (Italy), whose late Quaternary volcanism has been characterized by two major caldera-forming events (Campanian Ignimbrite at similar to 39 ka, and Neapolitan Yellow Tuff at similar to 15 ka). Our data indicate that the increase of trivalent rare earth elements and yttrium into the crystal lattice M2 site is facilitated by the charge-balancing substitution of Si4+ with Al3+ on the tetrahedral site. Higher concentrations of tetravalent and pentavalent high field strength elements on the M1 site are also measured when the average charge on this site is increased by the substitution of divalent cations by Al-vi. In contrast, due to these charge balance requirements, divalent transitional elements become less compatible within the crystal lattice. On the basis of the lattice strain theory, we document that the incorporation of rare earth elements and yttrium in clinopyroxene is influenced by both compositional and physical parameters. Data from this study allow to update existing partitioning equations for rare earth elements in order to construct a self-consistent model for trachy-phonolitic magmas based on the lattice strain theory. The application of this model to natural products from the Campanian Ignimbrite, the largest caldera-forming eruption at the Campi Flegrei, reveals that the complex rare earth element pattern recorded by the eruptive products can be successfully described by the stepwise fractional crystallization of clinopyroxene and feldspar where the clinopyroxene-melt partition coefficient changes progressively as a function of the physicochemical conditions of the system. (c) 2016 Elsevier B.V. All rights reserved.
      61  1
  • Publication
    Restricted
    The effect of CaO on the partitioning behavior of REE, Y and Sc between olivine and melt: Implications for basalt-carbonate interaction processes
    The partitioning of REE,Y and Sc (R3+) between olivine and melt has been investigated experimentally during basalt-carbonate interaction. Three synthetic basalts (meltMg#72, meltMg#75 and meltMg#78) were doped with 0, 10 and 20 wt% CaCO3 and then equilibrated for 72 h at 1 atm, 1,150, 1,200 and 1,250 °C, and the QFM oxygen buffer. The thermal decomposition of CaCO3 produced CaO contents in the melt up to ~22 wt%. Regular relationships are found between the ionic radius and the partition coefficient (DR3+), showing typical near-parabolic patterns. DR3+ is weakly dependent on temperature, but decreases with increasing CaCO3 in the starting material (e.g., DSc decreases from 0.20 to 0.13). From the point of view of the lattice strain theory, DR3+ is described in terms of the radius of the crystal site (r0), the Young Modulus (E) due to the elastic response of that site to lattice strain caused by cation insertion, and the strain-free partition coefficient (D03+). The value of r0 decreases as Ca cations are accommodated into the more distorted M2 site of olivine via progressive CaFe substitutions. This mechanism is accompanied by a higher proportion of Mg cations entering into the smaller M1 site, making the optimum ionic radius smaller and favoring the crystallization of more forsteritic olivines from decarbonated melts. The enrichment of Ca in the crystal lattice is also proportional to the number of Si and Ca cations available in the melt. This causes E to be anticorrelated either with Ca in olivine or the activity of CaO in the melt. R3+ cations behave as network modifiers and, during basalt-carbonate interaction, the increasing abundance of non-bridging oxygens enhances the solubility of REE, Y and Sc in the melt. As a consequence, D03+ is negatively correlated with the degree of melt depolymerization. Additionally, the strain of the crystal lattice dominates the DR3+ parabolic patterns and D03+ is strongly controlled by forsterite and aluminium concentrations in olivine. The accommodation of REE, Y and Sc in the crystal lattice requires maintenance of local charge-balance by the generation of vacancies, in accord with a paired substitution of R3+ and a vacancy for Mg in octahedral sites.
      62  5