Now showing 1 - 2 of 2
  • Publication
    Restricted
    Constraints on stress and friction from dynamic rupture models of the 1994 Northridge, California, earthquake
    (2000) ; ;
    Nielsen, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Olsen, K.; Ist. for Crustal Studies, UNiversity of California, Santa Barbara
    ;
    ;
    We have simulated several scenarios of dynamic rupture propagation for the 1994 Northridge, California, earthquake, using a three-dimensional finite-difference method. The simulations use a rate- and slip-weakening friction law, starting from a range of initial conditions of stress and frictional parameters. A critical balance between initial conditions and friction parameters must be met in order to obtain a moment as well as a final slip distribution in agreement with kinematic slip inversion results. We find that the rupture process is strongly controlled by the average stress and connectivity of high-stress patches on the fault. In particular, a strong connectivity of the high-stress patches is required in order to promote the rupture propagation from the initial nucleation to the remaining part of the fault. Moreover, we find that a small amount of rate-weakening is needed in order to obtain a level of inhomogeneity in the final slip, similar to that obtained in the kinematic inversion results. However, when the amount of rate-weakening is increased, the overall moment drops dramatically unless the average prestress is raised to unrealistic levels. A velocity-weakening parameter on the order of 10 cm per second is found to be adequate for an average prestress of about a hundred bars. The presence of the free surface and of the uppermost low-impedance layers in the model are found to have negligible influence on the rupture dynamics itself, because the top of the fault is at a depth of several kilometers. The 0.1–0.5 Hz radiated waves from the dynamic simulation provides a good fit to strong motion data at sites NWH and SSA. Underprediction of the recorded peak amplitude at JFP is likely due to omission of near-surface low velocity and 3-D basin effects in the simulations.
      114  22
  • Publication
    Restricted
    3D Ground-Motion Estimation in Rome, Italy
    (2006) ; ; ; ; ;
    Olsen, K. B.; Department of Geological Sciences, San Diego State University
    ;
    Akinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Rovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Marra, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    Malagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia
    ;
    ; ; ; ;
    Paleoseismic evidence and seismic-hazard analysis suggest that the city of Rome, Italy, has experienced considerable earthquake ground motion since its establishment more than 2000 years ago. Seismic hazards in Rome are mainly associated with two active seismogenic areas: the Alban Hills and the Central Apennines regions, located about 20 km southeast and 80–100 km east of central Rome. Within the twentieth century, M 6.8 and M 5.3 earthquakes in the Apennines and the Alban Hills, respectively, have generated intensities up to Mercalli-Cancani-Sieberg scale (MCS) VII in the city. With a lack of strong-motion records, we have generated a 3D velocity model for Rome, embedded in a 1D regional model, and estimated long-period ( 1 Hz) ground motions for such scenarios from finite-difference simulations of viscoelastic wave propagation. We find 1-Hz peak ground velocities (PGVs) and peak ground accelerations (PGAs) of up to 14 cm/sec and 44 cm/sec2, respectively, for a M 5.3 Alban Hills scenario, largest near the northwestern edge of the Tiber River. Our six simulations of a M 7.0 Central Apennine scenario generate 0.5-Hz PGVs in Rome of up to 9 cm/sec, as well as extended duration up to 60 sec. The peak motions are similar to, but the durations much longer than those from previous studies that omitted important wave-guide effects between the source and the city. The results from the two scenarios show that the strongest ground-motion amplification in Rome occurs in the Holocene alluvial areas, with strong basin edge effects in the Tiber River valley. Our results are in agreement with earlier 2D SHwave results showing amplification of peak velocities by up to a factor of 2 in the alluvial sediments, largest near the contact to the surrounding Plio-Pleistocene formations. Our results suggest that both earthquakes from the Alban Hills and the Central Apennines regions contribute to the seismic hazards in Rome. Although earthquakes from the former area may generate the larger peak motions, seismic waves from the latter region may generate ground motions with extended durations capable of causing significant damage on the built environment.
      232  30