Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Moretti, R.*
Arienzo, I.*
Chiodini, G.*
Civetta, L.*
Orsi, G.*
Title: Geochemical Evidences that Unrest at Campi Flegrei Resurgent Caldera (Southern Italy) Is Due to Magma Emplacement and Degassing at Shallow Depth Plus Fluxing from a Deep-Seated Regional Body
Issue Date: 31-May-2010
Keywords: Geochemical Evidences
Campi Flegrei
Abstract: Volcanic calderas are affected by unrest episodes usually dominated by hybrid magmatic-hydrothermal system dynamics. Unrest episodes can evolve to eruptions of variable intensity, up to Plinian. Campi Flegrei caldera (CFc) is a type-location for this kind of activity escalation. CFc offers unique opportunity to join volcanological information to a long record of geochemical parameters. This allows understanding the role that magmatic system plays on variations displayed by the hydrothermal system. We model uneruptive unrest episodes as driven by i) the shallow emplacement (~4 km depth) of one volatile-rich magma batch ascending from a deep (≥ 8 km) magmatic body of regional extent, ii) subsequent gas separation with degassing driven by crystallization and iii) fluxing from the deep magmatic body. Our model matches three decades of geochemical constraints from fumarole discharges, as well as data from melt inclusions of past CFc eruptions. Besides, magma physical properties demanded for modeled degassing conditions are in good agreement with existing geophysical data. Our results open new perspectives to the definition of unrest scenarios at highly-populated CFc, as well as other resurgent calderas (e.g., Orsi et al., This Assembly).
Appears in Collections:04.04.11. Instruments and techniques
Conference materials
04.08.01. Gases
04.08.06. Volcano monitoring
04.04.12. Fluid Geochemistry

Files in This Item:

File SizeFormatVisibility
Geochemical Evidences that Unrest.pdf166.98 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA