Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Chiodini, G.*
Avino, R.*
Caliro, S.*
Cardellini, C.*
Costa, A.*
Frondini, F.*
Title: Carbon dixide emission in Italy: Shallow crustal sources or subduction related fluid recycling?
Issue Date: 21-Jun-2009
Keywords: anomalous flux CO2
Abstract: Anomalous non-volcanic CO2 release in central and southern Italy has been highlighted by ten years of detailed investigations on Earth degassing processes. Two regional degassing structures are located in the Tyrrhenian sector where more then 200 emissions of CO2 are located and has been recently included in the first web based catalogue of degassing sites ( The total amount of CO2 released by the two structures were evaluated to be > 2×1011 mol a-1 ( >10% of the estimated global volcanic CO2 emission). The anomalous flux of CO2 suddenly disappears in the Apennine in correspondence of a narrow band where most of the Italian seismicity concentrates. Here, at depth, the gas accumulates in crustal traps generating CO2 overpressurised reservoirs. These overpressured structures are, in our opinion, one of the main cause of Apennine earthquake activation processes. The results of these investigations suggested that Earth degassing in Italy may have an active primary role in the geodynamics of the region. What is the origin of gas? The large extension of the degassing structures and petrologic data suggested that the main source of gas is a mantle metasomatised by the fluids produced in the subdacted slabs. However, has been also hypothesised the presence of localised crustal source of the gas. This matter will be discussed on the base of unpublished isotopic data of the main gas emissions.
Appears in Collections:Conference materials
03.04.06. Hydrothermal systems
04.04.12. Fluid Geochemistry
03.04.05. Gases

Files in This Item:

File SizeFormatVisibility
Chiodini et al., 2009.pdf137.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA