Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3812
DC FieldValueLanguage
dc.contributor.authorallAndronico, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCioni, R.; Università di Cagliarien
dc.date.accessioned2008-04-21T08:56:32Zen
dc.date.available2008-04-21T08:56:32Zen
dc.date.issued2002-06-21en
dc.identifier.urihttp://hdl.handle.net/2122/3812en
dc.description.abstractIntense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1–AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapillibearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3–AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma–water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.en
dc.description.sponsorshipGruppo Nazionale di Vulcanologia (GNV) of the Consiglio Nazionale delle Ricerche (CNR) of Italyen
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Volcanologyen
dc.relation.ispartofseries/64 (2002)en
dc.subjectAvellino eruptionsen
dc.subjectMount Vesuviusen
dc.subjectPompeii eruptionsen
dc.subjectTephrostratigraphyen
dc.subjectVolcanic hazardsen
dc.titleContrasting styles of Mt. Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber372-391en
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1007/s00445-002-0215-4en
dc.relation.referencesAlbore Livadie C, D’Alessio G, Mastrolorenzo G, Rolandi G (1986) Le eruzioni del Somma-Vesuvio in epoca protostorica. In: Tremblement de Terre, éruptions volcaniques et vié des hommes dans la Campanie antique. Centre J Bérard – Bibliothèque de l’Institute Francais de Naples Deuxième série VII, pp 55–66 Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geological map of Somma-Vesuvius volcano. Per Mineral 64:77–78 Arnò V, Principe C, Rosi M, Santacroce R, Sbrana A, Sheridan MF (1987) Eruptive history. In: Santacroce R (ed) Somma Vesuvius. CNR Quaderni Ricerca Sci 114:53–103. Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and sub-Plinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150 Barberi F, Cioni R, Rosi M, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and compositional analysis of pyroclastic deposits. J Volcanol Geotherm Res 38:287–307 Barberi F, Macedonio G, Pareschi MT, Santacroce R (1990) Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344:142–144 Bertagnini A, Landi P, Santacroce R, Sbrana A (1991) The 1906 eruption of Vesuvius: from magmatic to phreatomagmatic activity through the flashing of a shallow depth hydrothermal system. Bull Volcanol 53:517–532 Blong RJ (1984) Volcanic hazards. Academic Press, Australia, pp 1–424 Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187 Booth B, Croasdale R, Walker GPL (1978) A quantitative study of five thousands years of volcanism on São Miguel, Azores. Phil Trans R Soc Lond A 288:271–319 Brooker MR, Houghton BF, Wilson CJN, Gamble JA (1993) Pyroclastic phases of a rhyolitic dome-building eruption: Puketarata tuff ring, Taupo Volcanic Zone, New Zealand. Bull Volcanol 55:395–406 Bursik M (1993) Subplinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57:57–60 Capaccioni B, Coniglio S (1995) Varicolored and vesiculated tuffs from La Fossa Volcano, Vulcano Island (Aeolian Archipelago, Italy); evidence of syndepositional alteration processes. Bull Volcanol 57:61–70 Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol Soc Am Bull 99:303–314 Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125 Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 421–430 Cioni R, Sbrana A, Vecci R (1992) Morphologic features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J Volcanol Geotherm Res 51:61–78 Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A, (1995) Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the A.D. 79 Plinian eruption of Vesuvius. J Petrol 36:739–776 Cioni R, Marianelli P, Santacroce R (1997) Thermal and compositional evolution of the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103:18277–18294 Cioni R, Levi S, Sulpizio R (2000) Apulian Bronze Age pottery as a long distance indicator of the Avellino Pumice Eruption (Vesuvius, Italy). In: McGuire WG, Griffiths DR, Hancock PL, Stewart IS (eds) The archaeology of geological catastrophes. Geol Soc Lond Spec Publ 171:159–177 Civetta L, Santacroce R (1992) Steady-state magma supply in the last 3,400 years of Vesuvius activity. Acta Vulcanol 2:147–159 Delibrias G, Di Paola GM, Rosi M, Santacroce R (1979) La storia eruttiva del complesso vulcanico Somma-Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend Soc Ital Mineral Petrol 35:411–438 Donoghue SL, Neall VE, Palmer AS, Stewart RB (1997) The volcanic history of Ruapehu during the last 2 millennia based on the record of the Tufa Trig Tephras. Bull Volcanol 59:136–146 Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167 Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin Heidelberg New York Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380 Hedberg HD (1994) International stratigraphic guide, 2nd edn. The International Union of Geological Sciences and The Geological Society of America, Boulder Henderson CMB (1984) Feldspathoid stabilities and phase inversions: a review. In: Brown WL (ed) Feldspars and feldspathoids. Reidel, Dordrecht, pp 471–499 Heiken GH, Wohletz KH (1985) Volcanic ash. University of California Press, Berkeley, pp 1 246 Heiken G, Wohletz K (1991) Fragmentation processes in explosive volcanic eruptions. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. Soc Econ Paleontol Mineral Spec Publ 45:19–26. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462 Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000). Impact of the 1945 and 1995–96 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 112:720–726 Inmann DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145 Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two Plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol Soc Am Bull 84:759–772 Lorenz VW (1974) Vesiculated tuffs and associated features. Sedimentology 21:273–291 Marianelli P (1995) La camera magmatica del Vesuvio: processi petrogenetici e dinamica eruttiva. PhD Thesis, Dipartimento di Scienze della Terra, Pisa Marianelli P, Metrich N, Sbrana A (1999) Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull Volcanol 61:48–63 Ono K, Watanabe K, Hoshizumi H, Ikebe S (1995) Ash eruption of the Naka-dake crater, Aso Volcano, Southwestern Japan. J Volcanol Geotherm Res 66:137–148 Palais JM, Kile PR, McIntosh WC, Seward D (1988) Magmatic and phreatomagmatic volcanic activity at Mt. Takahe, West Antarctica, based on tephra layers in the Byrd ice core and field observations at Mt. Takahe. J Volcanol Geotherm Res 35:295–317 Pareschi MT, Favalli M, Giannini F, Sulpizio R, Zanchetta G, Santacroce R (2000) May 5 1998, debris-flows in circum- Vesuvian areas (southern Italy): insights for hazard assessment. Geology 28:639–642 Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15 Rolandi G, Mastrolenzo G, Barrella AM, Borrelli A (1993a) The Avellino plinian eruption of Somma-Vesuvius (3,760 y. B.P.): the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geotherm Res 58:67–88 Rolandi G, Maraffi S, Petrosino P, Lirer L (1993b) The Ottaviano eruption of Somma-Vesuvius (8,000 y. B.P.): a magmatic alternating fall and flow-forming eruption. J Volcanol Geotherm Res 58:43–65 Rolandi G, Petrosino P, McGeehin J (1998) The interplinian activity at Somma-Vesuvius in the last 3,500 years. J Volcanol Geotherm Res 82:19–52 Rosi M, Santacroce R (1983) The A.D. 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, Plinian-type event at Vesuvius. J Volcanol Geotherm Res 17: 249–271 Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:183–201 Santacroce R (1987). Somma Vesuvius. CNR Quaderni Ricerca Sci 114:1–251 Santacroce R, Sbrana A, Sulpizio R, Zanchetta G, Andronico D, Arrighi S, Benvenuti E, Cioni R, Di Vito MA, Gurioli L, Leoni FM, Luperini W (2001) The new geological map of Somma-Vesuvius: a basic tool for hazard assessment. Geophysical Research Abstracts: European Geophysical Society 26th General Assembly, 25–30 March 2001, Nice, France Schumacher R, Schmincke HU (1991) Internal structure and occurrence of accretionary lapilli – a case study at Laacher See Volcano. Bull Volcanol 53:612–634 Self S (1976) The recent volcanology of Terceira, Azores. J R Geol Soc Lond 132:645–666 Sheridan MF, Marshall JR (1983) Interpretation of pyroclast surface features using SEM images. J Volcanol Geotherm Res 16: 153–159 Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, Eastern Central California. J Geophys Res 91:12539– 12571 Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester Stothers RB, Rampino MR (1983) Volcanic eruptions in the Mediterranean before A.D. 630 from written and archaeological sources. J Geophys Res 88:6357–6371 Vogel JS, Cornell W, Nelson DE, Southon JR (1990) Vesuvius/ Avellino, one possible source of seventeenth century B.C. climatic disturbance. Nature 344:534–537 Walker GPL (1973) Explosive volcanic eruptions – a new classification scheme. Geol Rundsch 62:431–446 Walker GPL (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240 Walker GPL, Croasdale R (1970) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:1–15 Wilson L, Walker GPL (1987) Explosive volcanic eruptions – VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89:657–679 Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17:31–63en
dc.description.obiettivoSpecifico3.5. Geologia e storia dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorAndronico, D.en
dc.contributor.authorCioni, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentUniversità di Cagliarien
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-8333-1547-
crisitem.author.orcid0000-0002-2526-9095-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Manuscripts
Files in This Item:
File Description SizeFormat Existing users please Login
Andronico&Cioni2002.pdfResearch paper987.2 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

83
checked on Feb 10, 2021

Page view(s) 20

333
checked on Apr 24, 2024

Download(s)

42
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric