Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2201
DC FieldValueLanguage
dc.contributor.authorallDe Natale, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTroise, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPingue, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T07:13:07Zen
dc.date.available2007-07-03T07:13:07Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2201en
dc.description.abstractWe review the main results, with several new analyses, obtained in recent times about the structure, present dynamics and hazard evaluation at Somma–Vesuvius volcanic complex. We present a global review and interpretation of structural features, both at local and regional scale, constrained both by seismic and petrological data. The local structure of Somma–Vesuvius is reviewed in three depth ranges, shallow, intermediate and deep. The shallow velocity structure is inferred by the joint inversion of shot and local earthquake arrival time data. The main feature pointed out at shallow depth is a high velocity anomaly at the crater axis, extending down to about 5 km of depth. Such an anomaly, first observed at Vesuvius, seems to be common to many other volcanoes. It can be interpreted in terms of the presence of solidified residual magma in the shallow conduits, accumulated in last eruptive cycles. The local seismicity is strongly clustered around this anomaly, due to the focusing effect of the rigidity contrast. The seismic occurrence appears as a result of the superposition of a background level, mainly due to gravitational instability of the Vesuvius cone, and of intense activity episodes, which possibly reflect episodic internal activity. Two main zones of magma accumulation in the upper crust are evidenced by the joint interpretation of seismic and petrological data. The first one, located in the depth range 4–6 km, is mainly constrained by the crystallisation depth of phonolitic magmas which fed Plinian and sub-Plinian eruptions; the second one, around 11–15 km of depth, is mainly constrained by reflected–converted seismic waves, and in agreement with crystallization depths inferred for the moderate eruptions. The study of the deep structure, performed by regional tomography with teleseisms, further points out magma roots at higher depths (15–30 km). An additional result for the deep structure, studied at regional scale and very important for geodynamic interpretations of the Tyrrhenian volcanisms, has been the evidence for a subducting slab under the Apennines, in an area where previous models hypothesised a slab window. New original studies of crystal growth (phenocrystals and microlites) on the eruptive products allow to infer typical times of magma rising from such reservoirs, which appear very low, on the order of minutes to tens of minutes. Static deformation at this volcano, in the last 30 yr, has been detected by the joint use of levelling, GPS and DIFSAR techniques. It indicates subsidence, very concentrated in the crater area and in a narrow strip all around the volcanic edifice, with maximum rates less than 0.01 m/yr. Static deformation in the crater area appears in agreement with the mechanism of gravitational instability generating local volcanotectonic seismicity, while the peculiar pattern around the volcanic edifice is probably due to the combination of extensional stress and volcanic loading, generating a ring normal fault-like structure. While the key results about structure and dynamics help to define pre-eruptive scenarios, a new probabilistic procedure to combine volcanological data and computer simulations has been used, in this paper, to build hazard maps giving the probability, at each location in the area, to be hit by a pyroclastic flow or to experience a destructive fall-out deposit. The review and new results of this work give then the first complete picture of the state of the art in our knowledge about Somma–Vesuvius volcano.en
dc.format.extent2882868 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth-Science Reviewsen
dc.relation.ispartofseries/74 (2006)en
dc.subjectvolcano structureen
dc.subjectvolcano dynamicsen
dc.subjectvolcanic hazarden
dc.subjectMount Vesuviusen
dc.titleThe Somma-Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluationen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber73-111en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1016/j.earscirev.2005.08.001en
dc.relation.referencesAmato, A., Alessandrini, B., Cimini, G.B., Frepoli, A., Selvaggi, G., 1993. Active and remnant subducted slabs beneath Italy: evidence from seismic tomography and seismicity. Ann. Geofis. XXXVI, 201–214. Appleton, J.D., 1972. Petrogenesis of potassium-rich lavas from the Roccamonfina Volcano, Roman Region, Italy. J. Petrol. 13 (3), 425–456. Arrighi, S., Principe, C., Rosi, M., 2001. Violent Strombolian and subPlinian eruptions at Vesuvius during post-1631 activity. Bull. Volcanol. 63, 126–150. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic Evidence of an extended magmatic sill under Mt. Vesuvius. Science 294, 1510–1512. Barberi, F., Leoni, L., 1980. Metamorphic carbonate ejecta from Vesuvius Plinian eruptions: evidence of the occurrence of shallow magma chambers. Bull. Volcanol. 43 (1), 108–120. Belkin, H.E., De Vivo, B., 1993. Fluid inclusion studies of ejected nodules from Plinian eruptions of Mt. Somma–Vesuvius. J. Volcanol. Geotherm. Res. 58, 98–100. Belkin, H.E., De Vivo, B., Roedder, E., Cortini, M., 1985. Fluid inclusion geobarometry from ejected Mt. Somma–Vesuvius nodules. Am. Mineral. 70, 288– 303. Berrino, G., Coppa, U., De Natale, G., Pingue, F., 1993. Recent geophysical investigation at Somma–Vesuvio volcanic complex. J. Volcanol. Geotherm. Res. 58, 239– 262. Berrino, G., Corrado, G., Riccardi, U., 1998. Sea gravity data in the gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area. J. Volcanol. Geotherm. Res. 82, 139–150. Bertagnini, A., Landi, P., Rosi, M., Vigliargio, A., 1998. The Pomici di Base Plinian eruption of Somma–Vesuvius. J. Volcanol. Geotherm. Res. 83, 219– 239. Borgia, A., Tizzani, P., Solaro, G., Manzo, M., Casu, F., Luongo, G., Pepe, A., Berardino, P., Fornaro, G., Sansosti, E., Ricciardi, G.P., Fusi, N., Di Donna, G., Lanari, R., 2005. Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophys. Res. Lett. 32 (3), L03303. doi:10.1029/2004GL022155. Capuano, P., Coppa, U., De Natale, G., Di Sena, F., Godano, C., Troise, C., 1999. Accurate analysis of some local earthquakes at Somma–Vesuvius. Ann. Geofis. 42 (3), 391– 405. Carey, S.N., Sparks, R.S.J., 1986. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 48, 109–125. Cashman, K.V., Marsh, B.D., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib. Mineral. Petrol. 99, 292–305. Chiarabba, C., Amato, A., 1996. Crustal velocity structure of the Apennines (Italy) from P-wave travel time tomography. Ann. Geofis. 39, 1133– 1148. Chiarabba, C., Amato, A., Boschi, E., Barberi, F., 2000. Recent seismicity and tomographic modelling of the Mount Etna plumbing system. J. Geophys. Res. 105, 10923– 10938. Chouet, A.B., 1996. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309– 316. Cimini, G.B., De Gori, P., 1997. Upper mantle velocity structure beneath Italy from direct and secondary P-wave teleseismic tomography. Ann. Geofis. XL, 175– 194. Cioni, R., 2000. Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib. Mineral. Petrol. 140, 40–54. Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R., Sbrana, A., 1995. Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J. Petrol. 36, 739– 776. Civetta, L., Santacroce, R., 1992. Steady state magma supply in the last 3400 years of Vesuvius activity. Acta Vulcanol. 2, 147–159. Civetta, L., Galati, R., Santacroce, R., 1991. Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull. Volcanol. 53, 287– 300. Civetta, L., D’Antonio, M., De Lorenzo, S., Di Renzo, V., Gasparini, P., 2004. Thermal and geochemical constraints on the deep magmatic structure of Mt Vesuvius. J. Volcanol. Geotherm. Res. 133, 1 –12. Connor, B.C., Hill, E.B., Winfrey, B., Franklin, M.N., La Femina, C.P., 2001. Estimation of volcanic hazards from tephra fallout. Nat. Hazards Rev., 33–42 (February). Corrado, G., Rapolla, A., 1981. The gravity field of Italy: analysis of its spectral composition and delineation of a three-dimensional crustal model for central-southern Italy. Boll. Geofis. Teor. Appl. XXIII (89), 17– 29. De Astis, G., Pappalardo, L., Piochi, M., 2004. Procida Volcanic History: new insights in the evolution of the Phlegraean Volcanic District (Campania region, Italy). Bull. Volcanol. 66, 622– 641. doi:10.1007/s00445-004-0345-y. De Gori, P., Cimini, G.B., Chiarabba, C., De Natale, G., Troise, C., Deschamps, A., 2001. Teleseismic tomography of the Campanian volcanic area and surrounding Apenninic belt. J. Volcanol. Geotherm. Res. 109 (1–3), 52– 75. De Natale, G., Capuano, P., Troise, C., Zollo, A., 1998. Seismicity at Somma–Vesuvius and its implications for the 3-D tomography of volcano. J. Volcanol. Geotherm. Res. 82, 175– 197. De Natale, G., Petrazzuoli, S.M., Troise, C., Pingue, F., Capuano, P., 2000. Internal stress field at Mt. Vesuvius: a model for the generation of background seismicity at a central volcano. J. Geophys. Res. 105 (B7), 16207– 16214. De Natale, G., Troise, C., Pingue, F., De Gori, P., Chiarabba, C., 2001. Structure and dynamics of the Somma–Vesuvius volcanic complex. Mineral. Petrol. 73 (1–3), 5– 22. De Natale, G., Chiarabba, C., Troise, C., Trigila, R., Dolfi, D., Kissling, E., 2004a. Seismicity and 3D sub-structure at Somma– Vesuvius volcano: evidence for magma quenching due to H2O exolution? Earth Planet. Sci. Lett. 221, 181– 196. De Natale, G., Kuznetzov, I., Kronrod, T., Peresan, A., Sarao` , A., Troise, C., Panza, G., 2004b. Three decades of seismic activity at Mt. Vesuvius: 1972–2000. Pure Appl. Geophys. 161, 123– 144. De Vivo, B., Scandone, R., Trigila, R. (Eds.), Mount Vesuvius, Journ. Geotherm. Res., vol. 58, no.1/4. Del Moro, A., Fulignati, P., Marianelli, P., Sbrana, A., 2001. Magma contamination by direct wall rock interaction: constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). J. Volcanol. Geotherm. Res. 112, 15– 24. Del Pezzo, E., Bianco, F., Saccorotti, G., 2004. Seismic source dynamics at Vesuvius volcano, Italy. J. Volcanol. Geotherm. Res. 133, 23– 29. Di Maio, R., Mauriello, P., Patella, D., Petrillo, Z., Piscitelli, S., Siniscalchi, A., 1998. Electric and electromagnetic outline of the Mount Somma–Vesuvius structural setting. J. Volcanol. Geotherm. Res. 82 (1–4), 219– 238. Di Stefano, R., Chiarabba, C., 2002. Active source tomography at Mt. Vesuvius: constraints for the magmatic system. J. Geophys. Res. 107 (B11), 2278–2292. Di Stefano, R., Chiarabba, C., Lucente, F.P., Amato, A., 1999. Crustal and uppermost mantle structure in Italy from the inversion of Pwave travel times: geodynamics implications. Geophys. J. Int. 139, 483– 498. Doglioni, C., Mongelli, F., Pieri, P., 1994. The Puglia uplift (SE Italy): an anomaly in the foreland of the Apenninic subduction due to buckling of a tick continental lithosphere. Tectonics 13, 1309–1321. Eberhart-Phillips, D., Reyners, M., 1997. Continental subduction and three-dimensional crustal structure: the northern South Island, New Zealand. J. Geophys. Res. 102, 11843– 11861. Fedi, M., Florio, G., Rapolla, A., 1998. 2.5D modelling of Somma– Vesuvius structure by aeromagnetic data. J. Volcanol. Geotherm. Res. 82 (1–4), 239– 247. Ferrucci, F., Gaudiosi, G., Pino, N.A., Luongo, G., Hirn, A., Mirabile, L., 1989. Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, Southern Italy). Geophys. Res. Lett. 16, 1317–1320. Ferrucci, F., Hirn, A., De Natale, G., Virieux, J., e Mirabile, L., 1992. P–SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy): evidence for the magma chamber boundaries. J. Geophys. Res. 97 (B11), 15351–15359. Friedlander, S.K., 2000. Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour. Wiley, New York. Fulignati, P., Marianelli, P., Sbrana, A., 1998. New insights on the thermometamorphic–metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanol. 10 (1), 47– 54. Fulignati, P., Marianelli, P., Metrich, N., Santacroce, R., Sbrana, A., 2004. Towards a reconstruction of the magmatic feeding system of the 1944 eruption of Mt Vesuvius. J. Volcanol. Geotherm. Res. 113, 13– 22. Gardner, C.A., Cashman, K.V., Neal, C.A., 1998. Tephra-fall deposits from the 1992 eruption of Crater Peak, Alaska: implications of clast textures for eruptive processes. Bull. Volcanol. 59, 537–555. Gasparini, P., Tomoves Working Group, 1998. Looking inside Mt. Vesuvius. EOS, Trans., AGU 79 (229,230,232). Hammer, J.E., Cashman, K.V., Hoblitt, R.P., 1999. Degassing and microlite crystallization during pre-climatic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull. Volcanol. 60, 355–380. Hill, D.P., 1992. Temperatures at the base of the seismogenetic crust beneath Long Valley Caldera, California, and Phlegrean Fields caldera, Italy. In: Gasparini, P., Scarpa, R., Aki, K. (Eds.), Volcanic Seismology. Springer Verlag, pp. 432–461. Joupart, Tait, 1990. Dynamics of eruptive phenomena. Rev. Mineral. Geochem. 24, 213–238. Klein, F.W., 1989. User’s Guide to HYPOINVERSE, A program for VAX Computers to Solve Earthquake Locations and Magnitudes, USGS Open-File Rept., pp. 89–314. Lanari, R., De Natale, G., Berardino, P., Sansosti, E., Ricciardi, R., Borgstrom, S., Capuano, P., Pingue, F., Troise, C., 2002. Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano. Geophys. Res. Lett. 29 (9), 10.1029. Landi, P., Bertagnini, A., Rosi, M., 1999. Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base Plinian eruption of Somma–Vesuvius (Italy). Contrib. Mineral. Petrol. 135, 179–197. Lima, A., Danyushevsky, L.V., De Vivo, B., Fedele, L., 2003. A model for the evolution of the Mt. Somma–Vesuvius magmatic system based on fluid and melt inclusion investigations, In Melt inclusions in volcanic systems: methods, applications and problems. In: De Vivo, B., Bodnar, R.J. (Eds.), Development in Volcanology. Elsevier press, p. 272. Lirer, L., Munno, R., Petrosino, P., Vinci, A., 1993. Tephrostratigraphy of the AD 79 pyroclastic deposits in peri-volcanic areas of Mt. Vesuvio, Italy. J. Volcanol. Geotherm. Res. 58, 133– 149. Lomax, A., Zollo, A., Capuano, P., Virieux, J., 2001. Precise, absolute earthquake location under Somma–Vesuvius volcano using a new 3D velocity model. Geophys. J. Int. 146 (2), 313–331. Lucente, F.P., Chiarabba, C., Cimini, G.B., Giardini, D., 1999. Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res. 104, 20307–20327. Marianelli, P., Me´trich, N., Sbrana, A., 1999. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull. Volcanol. 61, 48–63. Marsh, B.D., 1988. Crystal size distribution (CSD) in rocks and kinetics and dynamics of crystallization: I. Theory. Contrib. Mineral. Petrol. 99, 277– 291. Mastrolorenzo, G., Munno, R., Rolandi, G., 1993. Vesuvius 1906: a case study of a paroxysmal eruption and its relation to eruption cycles. J. Volcanol. Geotherm. Res. 58, 217– 237. Mastrolorenzo, G., Brachi, L., Canzanella, A., 2001. Vesicularity of various types of pyroclastic deposits of Campi Flegrei volcanic field: evidence of analogies in magma rise and vesiculation mechanisms. J. Volcanol. Geotherm. Res. 109, 41– 53. Mastrolorenzo, G., Palladino, D., Vecchio, G., Taddeucci, J., 2002. The 472 AD Pollena eruption of Somma–Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. J. Volcanol. Geotherm. Res. 113, 19–36. McEwen, A.S., Malin, M.C., 1989. Dynamics of Mount St. Helens’ 1980 pyroclastic flow, rockslide–avalanche, lahars, and blast. J. Volcanol. Geotherm. Res. 37, 205– 231. McNutt, S.R., 1996. Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In: Scarpa, R., Tilling, R.I. (Eds.), Monitoring and Mitigation of Volcano Hazard. Springer Verlag, pp. 99– 146. Menke, W., 1984. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press. 260 pp. Meredith, P.G., Main, I.G., Jones, C., 1990. Temporal variations in seismicity during quasi-static and dynamic rock failure. Tectonophysics 175, 249– 268. Middleton, G.V., Southard, J.B., 1978. Mechanism of Sediment Movement. Soc. Econ. Paleontol. Mineral., Eastern Sec., Short Course Lecture Notes. 254 pp. Mostardini, P., Merlini, S., 1986. Appennino centro-meridionale: sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital. 35, 177– 202. Natale, M., Nunziata, C., Panza, G.F., in press. Average shear wave velocity models of the crustal structure at Mt. Vesuvius, Phys. Earth Planet. Int. Panza, G.F., Romanelli, F., 2001. Beno Gutenberg contribution to seismic hazard assessment and recent progress in the European– Mediterranean region. Earth Sci. Rev. 55, 165– 180. Panza, G.F., Pontevivo, A., Chimera, G., Raykova, R., Aoudia, A., 2003. The Lithosphere–Asthenosphere: Italy and surroundings. Episodes 26, 169–174. Pappalardo, L., Piochi, M., D’Antonio, M., Civetta, L., Petrini, R., 2002. Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J. Petrol. 43 (7), 1415– 1434. Pappalardo, L., Piochi, M., Mastrolorenzo, G., 2004. The 3800 yr BP- 1944 AD magma plumbing system of Somma–Vesuvius: constraints on its behaviour and present state through a review of isotope data. In: De Natale, L., De Vivo (Eds.), Ann. Geophys., special volume. Patacca, E., Scandone, P., 1989. Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab, in the Lithosphere in Italy, Advances in Earth Science Research (eds. A. Boriani et al.), CNR, Accademia Nazionale dei Lincei, pp. 157–176. Peccerillo, A., 2001. Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli Volcanoes: petrogenetic, geodynamic and volcanological implications. Mineral. Petrol. 73, 93– 105. Perla, R.I., 1980. Avalanche release, motion and impact. In: Colbeck, S.C. (Ed.), Dynamics of Snow and Ice Avalanches. Academic press, New York, pp. 397– 462. Piochi, M., Pappalardo, L., De Astis, G., 2004. Geochemical and isotopical variation within the Campanian Comagmatic Province: implications on magma source composition. In: De Natale, G., De Vivo (Eds.), Ann. Geophys., Volcanic Systems, Geochemical and Geophysical Monitoring. Melt Inclusions: Methods, Applications and Problems. Ann. Geophys, vol. 74 (4), pp. 1485–1499. Presti, D., Troise, C., De Natale, G., 2004. Probabilistic location of seismic sequences in heterogeneous media. Bull. Seismol. Soc. Am. 94 (6), 2239– 2263. Rolandi, G., Barrella, A.M., Borrelli, A., 1993. The 1631 eruption of Vesuvius. J. Volcanol. Geotherm. Res. 58, 183–201. Rosi, M., Principe, C., Vecci, R., 1993. The 1631 Vesuvius eruption. Reconstruction based on historical and stratigraphical data. J. Volcanol. Geotherm. Res. 58, 151– 182. Rossano, S., Mastrolorenzo, G., De Natale, G., Pingue, F., 1996. Computer simulation of pyroclastic flow movement: an inverse approach. Geophys. Res. Lett. 23, 3779– 3782. Rossano, S., Mastrolorenzo, G., De Natale, G., 1998. Computer simulation of pyroclastic flow movement on Somma–Vesuvius volcano. J. Volcanol. Geotherm. Res. 82, 113–137. Rossano, S., Mastrolorenzo, G., De Natale, G., 2004. Numerical simulation of pyroclastic density currents on Campi Flegrei topography: a tool for statistical hazard estimation. J. Volcanol. Geotherm. Res. 132, 1– 14. Russo, G., Giberti, G., Sartoris, G., 1997. Numerical modeling of surface deformation and mechanical stability of Vesuvius Volcano, Italy. J. Geophys. Res. 102, 24785– 24800. Santacroce, R., 1987. Somma–Vesuvius. CNR Quaderni de bLa Ricerca ScientificaQ, p. 251. Santacroce, R., Bertagnini, A., Civetta, L., Landi, P., Sbrana, A., 1993. Eruptive dynamics and petrogenetic processes in a very shallow magma reservoir: the 1906 eruption of Vesuvius. J. Petrol. 34, 383–425. Scandone, R., Iannone, F., Mastrolorenzo, G., 1986. Stima dei parametri eruttivi dell’eruzione del 1944, Boll. Gruppo Nazionale Vulcanologia. Selvaggi, G., Amato, A., 1992. Intermediate-depth earthquake in northern Apennines (Italy): evidence for a still active subduction? Geophys. Res. Lett. 19, 2127–2130. Sigurdsson, H., Carey, S., Cornell, W., Pescatore, T., 1985. The eruption of Vesuvius in AD 79. Nation. Geogr. Res. 1 (3), 332– 387. Suzuki, T., 1983. A theoretical model for the dispersion of tephra. In: Shimozuru, D., Yokiyama, I. (Eds.), Arc Volcanism: Physics and Tectonics. Terra Scientific Publishing Company, Tokyo, pp. 95– 113. Terada, T., 1929. On the form of volcanoes, Bull. Earthq. Res. Inst., Univ. Tokyo, 7, 207–221.U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976. Vilardo, G., De Natale, G., Milano, G., Coppa, U., 1996. The seismicity of Mt. Vesuvius. Tectonophysics 261, 127– 138. Villemant, B., Trigila, R., De Vivo, 1993. Geochemistry of Vesuvius volcanics during 1631–1944 period. J. Volcanol. Geotherm. Res. 58, 291–313. Woods, A.W., 1988. The fluid dynamics and thermodynamics of eruption columns. Bull. Volcanol. 50, 169– 193. Zollo, A., Gasparini, P., Biella, G., De Franco, R., Buonocore, B., Mirabile, L., De Natale, G., Milano, G., Pingue, F., Vilardo, G., Bruno, P.P., De Matteis, R., Le Meur, H., Iannaccone, G., Deschamps, A., Virieux, J., Nardi, A., Frepoli, A., Hunstad, I., Guerra, I., 1996. 2D seismic tomography of Somma–Vesuvius: description of the experiment and preliminary results. Ann. Geofis. 9, 471–486. Zollo, A., Gasparini, P., Virieux, J., Le Meur, H., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Mirabile, L., Vilardo, G., 1996. Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 274, 592– 594.en
dc.description.fulltextreserveden
dc.contributor.authorDe Natale, G.en
dc.contributor.authorTroise, C.en
dc.contributor.authorPingue, F.en
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.authorPappalardo, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-8391-2846-
crisitem.author.orcid0000-0001-6555-5777-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
383.pdf2.82 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

55
checked on Feb 10, 2021

Page view(s) 5

1,291
checked on Apr 24, 2024

Download(s)

57
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric