Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16415
Authors: Gambino, Salvatore* 
Barreca, Giovanni* 
Gross, Felix* 
Monaco, Carmelo* 
Krastel, Sebastian* 
Gutscher, Marc-Andre* 
Title: Response: Commentary: Deformation Pattern of the Northern Sector of the Malta Escarpment (Offshore SE Sicily, Italy): Fault Dimension, Slip Prediction, and Seismotectonic Implications
Journal: Frontiers in Earth Science 
Series/Report no.: /10 (2022)
Publisher: Frontiers Media S.A.
Issue Date: 2022
DOI: 10.3389/feart.2022.886439
Abstract: Argnani (2021) provides a commentary (hereafter ARGN) on our paper titled: “Deformation Pattern of the Northern Sector of the Malta Escarpment: Fault Dimension, Slip Prediction, and Seismotectonic Implications,” which was published in the journal Frontiers in Earth Science in January 2021 (Gambino et al., 2021, hereafter GAMB). Through the interpretation of eight new seismic profiles (six of which are reported in Supplementary Figure S1 of GAMB) crossing the Malta Escarpment, GAMB pointed to a better definition of the geometry of three active faults (F1, F2, F3) and their seismic potential by employing slip tendency modeling and forward analysis. The results suggest that F3 is prone to be reactivated under the achieved stress field and has the capacity of generating M > 7 earthquakes. ARGN raises concerns about the higher resolution and less penetration of the eight newly acquired high-resolution multichannel reflection seismic profiles and the seismic-stratigraphic pattern proposed by GAMB. According to ARGN, “the seismic profiles analyzed by GAMB belong to different sets and have very different seismic characters and resolution, making seismic facies correlation pretty difficult, also because no tie lines are available. As a result, stratigraphic correlations are highly speculative and the ensuing uncertainties undermine the timing of the tectonic evolution envisaged by GAMB, as well as the age and rate of activity of tectonic structures.” Furthermore, ARGN argues on the hypothesis of an early large-scale slope instability affecting the area. Most of the statements of ARGN seem to be based on his available older multichannel reflection seismic profiles, which have, indeed, a higher penetration but less resolution. We also agree that high-resolution digital multichannel seismic profiles are not easily comparable with low-resolution multichannel seismic lines, but we see the clear advantage of a state-of-the-art technology to image the upper strata of sedimentary systems. The used system proved its robustness in many different settings worldwide and has been successfully used for many pre-site surveys for drilling campaigns for the IODP and ICDP. As a result, we rebut point-by-point ARGN’s comments and stand by our model on the active deformation pattern and seismotectonics of the northern sector of the Malta Escarpment.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
Gambino et al., 2022 Malta Escarpment Reply to Argnani.pdfOpen Access published article579.88 kBAdobe PDFView/Open
Show full item record

Page view(s)

31
checked on Apr 24, 2024

Download(s)

10
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric