Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1627
AuthorsSansò, F.* 
Venuti, G.* 
TitleInteger variables estimation problems: the Bayesian approach
Issue DateOct-1997
Series/Report no.40/5
URIhttp://hdl.handle.net/2122/1627
KeywordsBayesian theory
prior and posterior probability
integer and continuous variables
Subject Classification04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques 
AbstractIn geodesy as well as in geophysics there are a number of examples where the unknown parameters are partly constrained to be integer numbers, while other parameters have a continuous range of possible values. In all such situations the ordinary least square principle, with integer variates fixed to the most probable integer value, can lead to paradoxical results, due to the strong non-linearity of the manifold of admissible values. On the contrary an overall estimation procedure assigning the posterior distribution to all variables, discrete and continuous, conditional to the observed quantities, like the so-called Bayesian approach, has the advantage of weighting correctly the possible errors in choosing different sets of integer values, thus providing a more realistic and stable estimate even of the continuous parameters. In this paper, after a short recall of the basics of Bayesian theory in section 2, we present the natural Bayesian solution to the problem of assessing the estimable signal from noisy observations in section 3 and the Bayesian solution to cycle slips detection and repair for a stream of GPS measurements in section 4. An elementary synthetic example is discussed in section 3 to illustrate the theory presented and more elaborate, though synthetic, examples are discussed in section 4 where realistic streams of GPS observations, with cycle slips, are simulated and then back processed.
Appears in Collections:Annals of Geophysics

Files in This Item:
File Description SizeFormat 
39 sanso.pdf3.14 MBAdobe PDFView/Open
Show full item record

Page view(s)

92
checked on May 23, 2017

Download(s)

80
checked on May 23, 2017

Google ScholarTM

Check