Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/1507

Authors:  Le Meur, E.^{*} Virieux, J.^{*} Podvin, P.^{*} 
Title:  Seismic tomography of the Gulf of Corinth: a comparison of methods 
Issue Date:  Jan1997 
Series/Report no.:  40/1 
URI:  http://hdl.handle.net/2122/1507 
Keywords:  seismic tomography ray tracing eikonal equation inversion Gulf of Corinth 
Abstract:  At a local scale, traveltime tomography requires a simultaneous inversion of earthquake positions and velocity structure. We applied a joint iterative inversion scheme where medium parameters and hypocenter parameters were inverted simultaneously. At each step of the inversion, rays between hypocenters and stations were traced, new partial derivatives of traveltime were estimated and scaling between parameters was performed as well. The large sparse linear system modified by the scaling was solved by the LSQR method at each iteration. We compared performances of two different forward techniques. Our first approach was a fast ray tracing based on a paraxial method to solve the twopoint boundary value problem. The rays connect sources and stations in a velocity structure described by a 3D Bspline interpolation over a regular grid. The second approach is the finitedifference solution of the eikonal equation with a 3D linear interpolation over a regular grid. The partial derivatives are estimated differently depending on the interpolation method. The reconstructed images are sensitive to the spatial variation of the partial derivatives shown by synthetic examples. We aldo found that a scaling between velocity and hypocenter parameters involved in the linear system to be solved is important in recovering accurate amplitudes of anomalies. This scaling was estimated to be five through synthetic examples with the real configuration of stations and sources. We also found it necessary to scale Pand S velocities in order to recover better amplitudes of S velocity anomaly. The crustal velocity structure of a 50X50X20 km domain near Patras in the Gulf of Corinth (Greece) was recovered using microearthquake data. These data were recorded during a field experiment in 1991 where a dense network of 60 digital stations was deployed. These microearthquakes were widely distributed under the Gulf of Corinth and enabled us to perform a reliable tomography of first arrival P and S traveltimes. The obtained images of this seismically active zone show a south/north asymmetry in agreement with the tectonic context. The transition to high velocity lies between 6 km and 9 km indicating a very thin crust related to the active extension regime.At a local scale, traveltime tomography requires a simultaneous inversion of earthquake positions and velocity structure. We applied a joint iterative inversion scheme where medium parameters and hypocenter parameters were inverted simultaneously. At each step of the inversion, rays between hypocenters and stations were traced, new partial derivatives of traveltime were estimated and scaling between parameters was performed as well. The large sparse linear system modified by the scaling was solved by the LSQR method at each iteration. We compared performances of two different forward techniques. Our first approach was a fast ray tracing based on a paraxial method to solve the twopoint boundary value problem. The rays connect sources and stations in a velocity structure described by a 3D Bspline interpolation over a regular grid. The second approach is the finitedifference solution of the eikonal equation with a 3D linear interpolation over a regular grid. The partial derivatives are estimated differently depending on the interpolation method. The reconstructed images are sensitive to the spatial variation of the partial derivatives shown by synthetic examples. We aldo found that a scaling between velocity and hypocenter parameters involved in the linear system to be solved is important in recovering accurate amplitudes of anomalies. This scaling was estimated to be five through synthetic examples with the real configuration of stations and sources. We also found it necessary to scale Pand S velocities in order to recover better amplitudes of S velocity anomaly. The crustal velocity structure of a 50X50X20 km domain near Patras in the Gulf of Corinth (Greece) was recovered using microearthquake data. These data were recorded during a field experiment in 1991 where a dense network of 60 digital stations was deployed. These microearthquakes were widely distributed under the Gulf of Corinth and enabled us to perform a reliable tomography of first arrival P and S traveltimes. The obtained images of this seismically active zone show a south/north asymmetry in agreement with the tectonic context. The transition to high velocity lies between 6 km and 9 km indicating a very thin crust related to the active extension regime. 
Appears in Collections:  04.06.07. Tomography and anisotropy Annals of Geophysics

Files in This Item:
File 
Size  Format  Visibility 
01 le meur.pdf  7.33 MB  Adobe PDF  View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
