Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1173
DC FieldValueLanguage
dc.contributor.authorallKueppers, U.; University of Munich (LMU)en
dc.contributor.authorallScheu, B.; University of Munich (LMU)en
dc.contributor.authorallSpieler, O.; University of Munich (LMU)en
dc.contributor.authorallDingwell, D. B.; University of Munich (LMU)en
dc.date.accessioned2006-06-17T18:45:37Zen
dc.date.available2006-06-17T18:45:37Zen
dc.date.issued2006-05-15en
dc.identifier.urihttp://hdl.handle.net/2122/1173en
dc.description.abstractProducts of magma fragmentation can pose a severe threat to health, infrastructure, environment, and aviation. Systematic evaluation of the mechanisms and the consequences of volcanic fragmentation is very difficult as the adjacent processes cannot be observed directly and their deposits undergo transport-related sorting. However, enhanced knowledge is required for hazard assessment and risk mitigation. Laboratory experiments on natural samples allow the precise characterization of the generated pyroclasts and open the possibility for substantial advances in the quantification of fragmentation processes. They hold the promise of precise characterization and quantification of fragmentation efficiency and its dependence on changing material properties and the physical conditions at fragmentation. We performed a series of rapid decompression experiments on three sets of natural samples from Unzen volcano, Japan. The analysis comprised grain-size analysis and surface area measurements. The grain-size analysis is performed by dry sieving for particles larger than 250 Am and wet laser refraction for smaller particles. For all three sets of samples, the grain-size of the most abundant fraction decreases and the weight fraction of newly generated ash particles (up to 40 wt.%) increases with experimental pressure/potential energy for fragmentation. This energy can be estimated from the volume of the gas fraction and the applied pressure. The surface area was determined through Argon adsorption. The fragmentation efficiency is described by the degree of fineparticle generation. Results show that the fragmentation efficiency and the generated surface correlate positively with the applied energy.en
dc.format.extent504138 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries153 (2006)en
dc.subjectexperimental volcanologyen
dc.subjectfragmentation efficiencyen
dc.subjectparticle analysisen
dc.subjectashen
dc.subjectmagmaen
dc.subjectporosityen
dc.subjectUnzen volcanoen
dc.titleFragmentation efficiency of explosive volcanic eruptions: A study of experimentally generated pyroclastsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber125-135en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1016/j.jvolgeores.2005.08.006en
dc.relation.referencesAlidibirov, M., Dingwell, D.B., 1996. An experimental facility for investigation of magma fragmentation by rapid decompression. Bull. Volcanol. 58, 411 –416. Alidibirov, M., Dingwell, D.B., 2000. Three fragmentation mechanisms for highly viscous magma under rapid decompression. J. Volcanol. Geotherm. Res. 100, 413– 421. Brunauer, S., Emmett, P.H., Teller, E.J., 1938. Adsorption of gases in multimolecular layer. Am. Chem. Soc. 60, 309. Cas, R.A.F., Wright, J.V., 1988. Volcanic Successions: Modern and Ancient. Chapman and Hall, 528 pp. Dingwell, D.B., 1996. Volcanic dilemma: blow or flow? Science 273, 1054–1055. Dingwell, D.B., Webb, S.L., 1989. Structural relaxation in silicate melts and non-Newtonian melt rheology in igneous processes. Phys. Chem. Miner. 16, 508– 516. Koptsik, S., Strand, L., Clarke, N., 2003. On the calculation of the surface area of different soil size fractions. Appl. Geochem. 18, 629–651. Kueppers, U, 2005. Nature and efficiency of pyroclast formation from porous magma: Insights from field investigations and laboratory experiments. PhD thesis, University of Munich, Germany, http:// edoc.ub.uni-muenchen.de/view/subjects/fak20.html. Kueppers, U., Scheu, B., Spieler, O., Dingwell, D.B., 2005. Fieldbased density measurements as tool to identify pre-eruption dome structure: set-up and first results from Unzen volcano, Japan. J. Volcanol. Geotherm. Res. 141, 65– 75. McBirney, A.R., Murase, T., 1970. Factors governing the formation of pyroclastic rocks. Bull. Volcanol. 34, 372– 384. Mueller, S., Melnik, O., Spieler, O., Scheu, B., Dingwell, D.B., 2005. Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull. Volcanol. 67 (6), 526– 538. Nakada, S., Motomura, Y., 1999. Petrology of the 1991–1995 eruption at Unzen: effusion pulsation and groundmass crystallisation. J. Volcanol. Geotherm. Res. 89, 173– 196. Riley, C.M., Rose, W.I., Bluth, G.J.S., 2003. Quantitative shape measurements of distal volcanic ash. J. Geophys. Res. 108 (B10), 2504, doi:10.1029/2001JB000818. Schleyer, R., 1987. The goodness of fit to ideal Gauss and Rosin distributions: a new grain-size parameter. J. Sediment. Petrol. 57, 871–880. Sparks, R.S.J., 1997. Causes and consequences of pressurisation in lava dome eruptions. Earth Planet. Sci. Lett. 150, 177– 189. Spieler, O., Kennedy, B., Kueppers, U., Dingwell, D.B., Scheu, B., Taddeucci, J., 2004. The fragmentation threshold of pyroclastic rocks. Earth Planet. Sci. Lett. 226, 139– 148. Taddeucci, J., Spieler, O., Kennedy, B., Pompilio, M., Dingwell, D.B., Scarlato, P., 2004. Experimental and analytical modelling of basaltic ash explosions at Mt. Etna, Italy, 2001. J. Geophys. Res. 109, B08203, doi:10.1029/2003JB002952. Weiner, B.B., 1984. Particle and droplet sizing using Fraunhofer diffraction. In: Barth, H.G. (Ed.), Modern Methods of Particle Size Analysis. J. Wiley and Sons, New York. Zimanowski, B., Wohletz, K., Dellino, P., Bu¨ttner, R., 2003. The volcanic ash problem. J. Volcanol. Geotherm. Res. 122, 1– 5.en
dc.description.fulltextpartially_openen
dc.contributor.authorKueppers, U.en
dc.contributor.authorScheu, B.en
dc.contributor.authorSpieler, O.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU)en
dc.contributor.departmentUniversity of Munich (LMU)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDept. of Earth and Environmental Sciences, Ludwig-Maximilians Universit¨at, Munich, Germany-
crisitem.author.deptUniversity of Munich (LMU)-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.orcid0000-0003-2815-1444-
crisitem.author.orcid0000-0002-0478-1049-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
kueppers et al_jvgr 153 (2006) 125-135_fragmentation efficiency.pdfpublisher's version492.32 kBAdobe PDF
Kueppers_fragm_efficiency_jvgr.pdfPost-print659.43 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

70
checked on Feb 10, 2021

Page view(s)

135
checked on Apr 24, 2024

Download(s) 20

696
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric