Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Chierici, F.*
Favali, P.*
Beranzoli, L.*
De Santis, A.*
Embriaco, D.*
Giovanetti, G.*
Marinaro, G.*
Monna, S.*
Pignagnoli, L.*
Riccobene, G.*
Bruni, F.*
Gasparoni, F.*
Title: NEMO-SN1 (Western Ionian Sea, off Eastern Sicily): A Cabled Abyssal Observatory with Tsunami Early Warning Capability
Issue Date: Jun-2012
Keywords: Tsunami
Precursors and Early Warning
Abyssal Multidisciplinary Observatories
Abstract: The NEMO-SN1 (NEutrino Mediterranean Observatory - Submarine Network 1) seafloor observatory is located in the central Mediterranean, Western Ionian Sea, off Eastern Sicily Island (Southern Italy) at 2100 m water depth, 25 km from the harbour of the city of Catania. It is a prototype of cabled deep-sea multiparameter observatory, and the first operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of EMSO (European Multidisciplinary Seafloor Observatory,, one of the European large-scale research infrastructures. EMSO will address long-term monitoring of environmental processes related to marine ecosystems, climate change and geo-hazards. NEMO-SN1 will perform geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydro-acoustic, bio-acoustic measurements to study earthquake and tsunami generation, and to characterize ambient noise which includes marine mammal sounds, and environmental and anthropogenic sources. NEMO-SN1 is also equipped with a prototype tsunami detector, based on the simultaneous measurement of the seismic and bottom pressure signals and a new high performance tsunami detection algorithm. NEMO-SN1 will be a permanent tsunami early warning node in Western Ionian Sea, an area where very destructive earthquakes have occurred in the past, some of them tsunamigenic (e.g., 1693, M=7.5; 1908, M=7.4). Another important feature of NEMO-SN1 is the installation of a low frequency-high sensibility hydrophone and two (scalar and vector, respectively) magnetometers. The objective is to improve the tsunami detection capability of SN1 through the recognition of tsunami-induced hydro-acoustic and electro-magnetic precursors.
Appears in Collections:Conference materials
03.03.05. Instruments and techniques

Files in This Item:

File SizeFormatVisibility
2012_ISOPE_Chierici_et_al_Isope_2012.pdf1.89 MBAdobe PDFonly authorized users View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA