Options
Passeri, Federico
Loading...
4 results
Now showing 1 - 4 of 4
- PublicationRestrictedExtensive surface geophysical prospecting for seismic microzonation(2020-05-27)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; ;This paper presents an overview of the geophysical activities for the seismic microzonation of 138 municipalities belonging to four Italian regions (Abruzzo, Lazio, Marche and Umbria) that were severely damaged by the seismic sequence of Central Italy (August 2016–January 2017). This study is the result of a collaborative effort between research Institutions and professional geologists with the support of local Administrations and the Italian Civil Protection Department and sets an unprecedented large-scale example of geophysical investigations supporting detailed seismic microzonation studies. This manuscript presents the methodological approach adopted for the geophysical activities, including the technical protocols and procedures, the best practices, the final products and the results supporting a detailed microzonation study of III level. The first step of the study was the collection and critical review of all available geophysical and geological information for planning the new geophysical surveys (specifically their type and location), in order to assess the subsoil geometry and the seismic characterization of the areas under investigation. Integration with the newly acquired geophysical data allowed the identification of zones with homogeneous local seismic hazard as well as the reference seismo-stratigraphy for each area, defining for each geological unit the ranges of the relevant properties in seismic amplification studies: layering and thicknesses, density, P-wave and S-wave seismic velocity. We also present a few representative case studies illustrating the geophysical investigation for different geomorphological situations. These examples, together with the findings of the entire project, are discussed to point out the strength points and the criticalities, as well as the necessary requirements in the application of geophysical methods to detailed microzonation studies.182 4 - PublicationRestrictedGeophysical Monitoring of Blast-induced Liquefaction at the Mirabello (NE Italy) Test SiteA blast-induced liquefaction test was conducted in the surroundings of Mirabello (NE Italy), where extensive liquefaction phenomena were observed after the 2012 Emilia earthquake. This experiment is the first blast-induced liquefaction test carried out in Italy. Several geophysical investigations were performed at the site to define initial soil condition and to evaluate the variations of the geophysical parameters over time. Specifically compressional (VP) and shear (VS) wave velocities were measured using both invasive (down-hole) and non-invasive (surface wave) tests. Electric Resistivity Tomography (ERT) tests were also carried out. Tests results before and after the blast-induced liquefaction are here presented and discussed with respect to the observed liquefaction effects. The evolution of measured geophysical parameters suggests that the soil modifications due to blasting (i.e., changes in porosity and soil structure) can be imaged with the adopted approaches.
95 3 - PublicationRestrictedReconnaissance of 2016 Central Italy Earthquake Sequence(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;The Central Italy earthquake sequence nominally began on 24 August 2016 with a M6.1 event on a normal fault that produced devastating effects in the town of Amatrice and several nearby villages and hamlets. A major international response was undertaken to record the effects of this disaster, including surface faulting, ground motions, landslides, and damage patterns to structures. This work targeted the development of high-value case histories useful to future research. Subsequent events in October 2016 exacerbated the damage in previously affected areas and caused damage to new areas in the north, particularly the relatively large town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 documented and mapped several large landslide features and increased damage states for structures in villages and hamlets throughout the region. This paper provides an overview of the reconnaissance activities undertaken to document and map these and other effects, and highlights valuable lessons learned regarding faulting and ground motions, engineering effects, and emergency response to this disaster.180 4 - PublicationOpen AccessThe first Italian blast-induced liquefaction test (Mirabello, Emilia-Romagna, Italy): description of the experiment and preliminary results(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ;; ; ;; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ;; ;; Soil liquefaction can result in significant settlement and reduction of load-bearing capacity. Moreover, the generation of pore pressure during an earthquake and its post-seismic dissipation can generate permanent deformations and settlements. The quantitative evaluation of post-liquefaction settlements is of extreme importance for engineering purposes, i.e. for earthquake-resistant design of new buildings and safety evaluation of existing ones. Quantifying the extent of these phenomena is, however, rather difficult. Uncertainties arise from the stochastic nature of the earthquake loading, from the simplifications of soil models, and from the difficulty in establishing correlations between the pre-earthquake soil state and the post-seismic deformations. Field scale liquefaction tests, under controlled conditions, are therefore important for a correct quantification of these phenomena. Recent experiences (e.g. New Zealand, United States) show that liquefaction can be induced and monitored with field scale blast tests to study the related effects on soil geotechnical properties. Within this framework this paper introduces the preliminary results obtained from a research project on blast-induced liquefaction at field scale. Tests were performed at a trial site located in Mirabello (Ferrara, Italy), a village strongly affected by liquefaction phenomena during the 2012 Emilia Romagna earthquake. Invasive tests, such as piezocone, seismic dilatometer and down-hole tests, and non-invasive tests were carried out before and after the execution of two blast test sequences to study the variation in physical properties of the soils. Pore pressure transducers, settlement profilometers and accelerometers were installed with the objective of measuring, during and after the detonations, the generation and subsequent dissipation of the pore pressure, the vertical deformations, and the blast-induced ground motions respectively. Variations in load distribution on deep foundations due to soil liquefaction were also evaluated on a test micropile instrumented with a strain gauge array. Topographical surveys were carried out to measure ground surface settlements. Laboratory tests and trenches also provided increased understanding of the site characteristics.1689 143