Options
Yin, Yonghong
Loading...
3 results
Now showing 1 - 3 of 3
- PublicationRestrictedInterannual-decadal variability of wintertime mixed layer depths in the North Pacific detected by an ensemble of ocean syntheses(2017-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ;The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.120 1 - PublicationOpen AccessIntercomparison and validation of the mixed layer depth fields of global ocean syntheses(2017-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.111 130 - PublicationOpen AccessThe Ocean Reanalyses Intercom parison Project (ORA - IP)(2015)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Balmaseda, M. A.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom ;Hernandez, F.; nstitut de Recherche pour le Développement (IRD), Toulouse, France Mercator Océan, Ramonville Saint - Agne, France ;Storto, A.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy ; Ist Nazl Geofis & Vulcanol, Sez Bologna, Bologna, Italy ;Palmer, M. D.; Met Office , Exeter, United Kingdom ;Alves, O.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia ;Shi, L.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia ;Smith, G. C.; Environment Canada, Québec, Canada ;Toyoda, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan ;Valdivieso, M.; University of Reading (U - Reading), Reading, United Kingdom ;Barnier, B.; Centre National de Recherche Scientifique (CN RS), Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France ;Behringer, D.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA ;Boyer, T.; NOAA/NODC, College Park , Maryland ;Chang, Y-S.; Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (GFDL/NOAA), Princeton, New Jer sey Department of Earth Science, Kongju National University, Kongju , South Korea ;Chepurin, G. A.; epartment of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA ;Ferry, N.; Mercator Océan, Ramonville Saint - Agne, France ;Forget, G.; Program in Atmosphere, Ocean, and Climate, Massachusetts Institute of Technology ;Fujii, Y.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan ;Good, S.; Met Office , Exeter, United Kingdom ;Guinehut, S.; Collecte Localisation Satellites (CLS), Ramonville Sa i nt - Agne, France ;Haines, K.; University of Reading (U - Reading), Reading, United Kingdom ;Ishikawa, Y.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan ;Keeley, S.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom ;Köhl, A.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany ;Lee, T.; Jet Propulsion Laboratory (JPL) , California Institute of Technolog y, Pasadena, California ;Martin, M.; Met Office , Exeter, United Kingdom ;Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Masuda, S.; Research and Development Center for Global Change (RCGC), JAMSTEC, Yokosuka, Japan ;Meyssignac, B.; Laboratoire d’Etudes en Géophysique et Océanographie Spatiale’ (LEGOS), Centre National d'Etudes Spatia les (CNES) in Toulouse, France. ;Mogensen, K.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom ;Parent, L.; Mercator Océan, Ramonville Saint - Agne, France ;Peterson, K. A.; Met Office , Exeter, United Kingdom ;Tang, Y. M.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Met Office , Exeter, United Kingdom ;Yin, Y.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia ;Vernieres, G.; Goddard Space Flight Center, National Aeronautics and Space Administration (GSFC/NASA), Greenbelt, Maryland ;Wang, X.; Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California ;Waters, J.; Met Office , Exeter, United Kingdom ;Wedd, R.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia ;Wang, O.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany ;Xue, Y.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA ;Chevallier, M.; CNRM - GAME, Météo - France, CNRS UMR3589, Toulouse, France ;Lemieux, J-F.; Environment Canada, Québec, Canada ;Dupont, F.; Environment Canada, Québec, Canada ;Kuragano, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan ;Kamachi, M.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan ;Awaji, T.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan ;Caltabiano, A.; I nternational CLIVAR Global Project Office, First Institute of Oceanography, State Oceanic Administration, China. ;Wilmer - Becker, K.; GODAE OceanView Pro ject Office, Met Office , Exeter, United Kingdom ;Gaillard, F.; Laboratoire de Physique des Océans (LPO/IFREMER), France; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth,upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems.431 398