Options
Azzarone, Adriano
Loading...
Preferred name
Azzarone, Adriano
Email
adriano.azzarone@ingv.it
Staff
staff
ORCID
13 results
Now showing 1 - 10 of 13
- PublicationOpen AccessSeismic Surveillance and Earthquake Monitoring in Italy(2021-03-03)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is an Italian research institution with focus on earth sciences. Moreover, the INGV is the operational center for seismic surveillance and earthquake monitoring in Italy and is a part of the civil protection system as a center of expertise on seismic, volcanic, and tsunami risks.INGV operates the Italian National Seismic Network and other networks at national scale and is a primary node of the European Integrated Data Archive for archiving and distributing strong‐motion and weak‐motion seismic recordings. In the control room in Rome, INGV staff performs seismic surveillance and tsunami warning services; in Catania and Naples, the control rooms are devoted to volcanic surveillance. Volcano monitoring includes locating earthquakes in the regions around the Sicilian (Etna, Eolian Islands, and Pantelleria) and the Campanian (Vesuvius, Campi Fregrei, and Ischia) active volcanoes. The tsunami warning is based on earthquake location and magnitude (M) evaluation for moderate to large events in the Mediterranean region and also around the world. The technologists of the institute tuned the data acquisition system to accomplish, in near real time, automatic earthquake detection, hypocenter and magnitude determination, and evaluation of several seismological products (e.g., moment tensors and ShakeMaps). Database archiving of all parametric results is closely linked to the existing procedures of the INGV seismic surveillance environment and surveillance procedures. Earthquake information is routinely revised by the analysts of the Italian seismic bulletin. INGV provides earthquake information to the Department of Civil Protection (Dipartimento di Protezione Civile) to the scientific community and to the public through the web and social media. We aim at illustrating different aspects of earthquake monitoring at INGV: (1) network operations; (2) organizational structure and the hardware and software used; and (3) communication, including recent developments and planned improvements.6191 272 - PublicationOpen AccessThe Italian Earthquakes and Tsunami Monitoring and Surveillance Systems(2019-07-16)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The Osservatorio Nazionale Terremoti (ONT) is the Italian seismic operational centre for monitoring earthquake, it is part of Istituto Nazionale di Geofisica e Vulcanologia (INGV) the largest Italian research institution, with focus in Earth Sciences. INGV runs the Italian National Seismic Network (network code IV) and other networks at national scale for monitoring earthquakes and tsunami. INGV is a primary node of European Integrated Data Archive (EIDA) for archiving and distributing, continuous, quality checked seismic waveforms (strong motion and weak motion recordings). ONT designed the data acquisition system to accomplish, in near-real-time, automatic earthquake detection, hypocentre and magnitude determination and evaluation of moment tensors, shake maps and other products. Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment and surveillance procedures. ONT organize the Italian earthquake surveillance service and the tsunami alert service (INGV is Tsunami Service Provider of the ICG/NEAM for the entire Mediterranean basin). We provide information to the Dipartimento di Protezione Civile (DPC) and to several Mediterranean countries. Earthquakes information are revised routinely by the analysts of the Italian Seismic Bulletin. The results are published on the web and are available to the scientific community and the general public.233 13 - PublicationRestrictedA comparative study of ionospheric IRIEup and ISP assimilative models during some intense and severe geomagnetic storms(2018-05-15)
; ; ; ; ; ; ; ; ; ; ; Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)). The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup (V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors. Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one.729 9 - PublicationOpen AccessPID Group INGV: a bridge towards Open Data(2013-10-25)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;sangianantoni, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia ;Michelini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Chiodetti, A.G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia ;Cianchi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia ;Bailo, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Ferrara, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia ;Sbarra, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia ;Locati, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia ;Rossi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia ;Fares, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Pignone, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Marcucci, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Guidace, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia ;Basili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Lauciani, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Costituzione del PID Group INGV e presentazione degli obiettivi346 232 - PublicationRestrictedNEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea(2013)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;NEMO Collaboration; ; ; ; ; ; ;Favali, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Chierici, F.; Istituto di Radio Astronomia-INAF ;Marinaro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Giovanetti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Beranzoli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;De Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Embriaco, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Monna, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lo Bue, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Sgroi, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Cianchini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Badiali, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Qamili, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;De Caro, M. G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Falcone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Montuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Frugoni, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;NEMO Collaboration; INFN - Istituto Nazionale di Fisica Nucleare ;Pignagnoli, L.; CNR-ISMAR - Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Italy ;Zitellini, N.; CNR-ISMAR - Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Italy ;Federico, B. ;Bruni, F.; Tecnomare S.p.A, Italy ;Gasparoni, F.; Tecnomare S.p.A, Italy ;Pavan, G.; CIBRA, Università di Pavia, Italy; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; The “NEutrino Mediterranean Observatory - Submarine Network 1” (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100 m water depth, 25 km from the harbour of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the “European Multidisciplinary Seafloor and water column Observatory” (EMSO, http://www.emso-eu.org), one of the incoming European large-scale research infrastructures included in the Roadmap of the “European Strategy Forum on Research Infrastructures” (ESFRI, http://cordis.europa.eu/esfri/roadmap.htm) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to Marine Ecosystems, Climate Change and Geo-hazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian funding and to the EC project “European Seas Observatory NETwork - Network of Excellence” (ESONET-NoE, 2007-2011) that funded the “Listening to the Deep Ocean - Demonstration Mission” (LIDO-DM) and a technological interoperability test (http://www.esonet-emso.org/). NEMOSN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydroacoustic, bio-acoustic measurements. Scientific objectives include studying seismic signals, tsunami generation and warnings, its hydroacoustic precursors, and ambient noise characterisation in terms of marine mammal sounds, environmental and anthropogenic sources. NEMO-SN1 is also an important test-site for the construction of the “Kilometre-Cube Underwater Neutrino Telescope” (KM3NeT, http://www.km3net.org/), another large-scale research infrastructure included in the ESFRI Roadmap based on a large volume neutrino telescope. The description of the observatory and its most recent implementations is presented. On 9th June, 2012 NEMO-SN1 was successfully deployed and is working in real-time.2868 228 - PublicationOpen AccessIONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere(UNIPRESS Casa Editrice e libreria Online Padova, 2012-05-30)
; ; ; ; ; ; ;Settimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Pezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Scotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Pietrella, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; ; ; ; ;Monorchio, A.; Universita` di Pisa via Diotisalvi 2 -- 56126 PISAThis proceeding describes an applicative software tool, named IONORT (IONOspheric Ray Tracing), for calculating a three-dimensional ray tracing of high frequency waves in the ionospheric medium. This tool runs under Windows operating systems and its friendly graphical user interface facilitates both the numerical data input/output and the two/three-dimensional visualization of the ray path. In order to calculate the coordinates of the ray and the three components of the wave vector along the path as dependent variables, the core of the program solves a system of six first order differential equations, the group path being the independent variable of integration. IONORT uses a three-dimensional electron density specification of the ionosphere, as well as geomagnetic field and neutral particles-electrons collision frequency models having validity in the area of interest.20372 8729 - PublicationOpen AccessIONORT: a Windows software tool to calculate the HF ray tracing in the ionosphere(2012-05)
; ; ; ; ; ; ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Pezzopane, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Pietrella, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Scotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Settimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; ; This paper describes an applicative software tool, named IONORT (IONOspheric Ray Tracing), for calculating a three-dimensional ray tracing of high frequency waves in the ionospheric medium. This tool runs under Windows operating systems and its friendly graphical user interface facilitates both the numerical data input/output and the two/three-dimensional visualization of the ray path. In order to calculate the coordinates of the ray and the three components of the wave vector along the path as dependent variables, the core of the program solves a system of six first order differential equations, the group path being the independent variable of integration. IONORT uses a three-dimensional electron density specification of the ionosphere, as well as geomagnetic field and neutral particles–electrons collision frequency models having validity in the area of interest.20801 581 - PublicationRestrictedA method to test HF ray tracing algorithm in the ionosphere by means of the virtual time delay(2011-11-15)
; ; ; ; ; ;Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Settimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Scotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lozito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; It is well known that a 3D ray tracing algorithm furnishes the ray’s coordinates, the three components of the wave vector and the calculated group time delay of the wave along the path. The latter quantity can be compared with the measured group time delay to check the performance of the algorithm. Simulating a perfect reflector at an altitude equal to the virtual height of reflection, the virtual time delay is assumed as a real time delay. For a monotonic electronic density profile we find a very small relative difference between the calculated and the virtual delay for both analytic and numerical 3D electronic density models.21730 430 - PublicationOpen AccessA method to test HF ray tracing algorithm in the ionosphere by means of the virtual time delay(2011-09-26)
; ; ; ; ; ;Settimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Scotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lozito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; ; ; ;Santucci, Sandro; Dipartimento di Fisica, Università dell’’Aquila.It is well known that a 3D ray tracing algorithm furnishes the ray’s coordinates, the three components of the wave vector and the calculated group time delay of the wave along the path. The latter quantity can be compared with the measured group time delay to check the performance of the algorithm. Simulating a perfect reflector at an altitude equal to the virtual height of reflection, the virtual time delay is assumed as a real time delay. For a monotonic electronic density profile we find a very small relative difference between the calculated and the virtual delay for both analytic and numerical 3D electronic density models.21338 606 - PublicationOpen AccessA method to test HF ray tracing algorithm in the ionosphere by means of the virtual time delay(2011-08-13)
; ; ; ; ; ;Azzarone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Settimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Scotto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Lozito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia ;Bianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; ; ; ; It is well known that a 3D ray tracing algorithm furnishes the ray’s coordinates, the three components of the wave vector and the calculated group time delay of the wave along the path. The latter quantity can be compared with the measured group time delay to check the performance of the algorithm. Simulating a perfect reflector at an altitude equal to the virtual height of reflection, the virtual time delay is assumed as a real time delay. For a monotonic electronic density profile we find a very small relative difference between the calculated and the virtual delay for both analytic and numerical 3D electronic density models.21343 554