Options
Carparelli, Giuseppe
Loading...
Preferred name
Carparelli, Giuseppe
Main Affiliation
4 results
Now showing 1 - 4 of 4
- PublicationOpen AccessToward a Real-Time Analysis of Column Height by Visible Cameras: An Example from Mt. Etna, in ItalyVolcanic plume height is one the most important features of explosive activity; thus, it is a parameter of interest for volcanic monitoring that can be retrieved using different remote sensing techniques. Among them, calibrated visible cameras have demonstrated to be a promising alternative during daylight hours, mainly due to their low cost and low uncertainty in the results. However, currently these measurements are generally not fully automatic. In this paper, we present a new, interactive, open-source MATLAB tool, named ‘Plume Height Analyzer’ (PHA), which is able to analyze images and videos of explosive eruptions derived from visible cameras, with the objective of automatically identifying the temporal evolution of eruption columns. PHA is a self-customizing tool, i.e., before operational use, the user must perform an iterative calibration procedure based on the analysis of images of previous eruptions of the volcanic system of interest, under different eruptive, atmospheric and illumination conditions. The images used for the calibration step allow the computation of ad hoc expressions to set the model parameters used to recognize the volcanic plume in new images, which are controlled by their individual characteristics. Thereby, the number of frames used in the calibration procedure will control the goodness of the model to analyze new videos/images and the range of eruption, atmospheric, and illumination conditions for which the program will return reliable results. This also allows improvement of the performance of the program as new data become available for the calibration, for which PHA includes ad hoc routines. PHA has been tested on a wide set of videos from recent explosive activity at Mt. Etna, in Italy, and may represent a first approximation toward a real-time analysis of column height using visible cameras on erupting volcanoes.
70 18 - PublicationOpen AccessNear-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy(2019)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ; ;; ; ; During explosive eruptions, emergency responders and government agencies need to make fast decisions that should be based on an accurate forecast of tephra dispersal and assessment of the expected impact. Here, we propose a new operational tephra fallout monitoring and forecasting system based on quantitative volcanological observations and modelling. The new system runs at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE) and is able to provide a reliable hazard assessment to the National Department of Civil Protection (DPC) during explosive eruptions. The new operational system combines data from low-cost calibrated visible cameras and satellite images to estimate the variation of column height with time and model volcanic plume and fallout in near-real-time(NRT). The new system has three main objectives: (i) to determine column height in NRT using multiple sensors (calibrated cameras and satellite images); (ii) to compute isomass and isopleth maps of tephra deposits in NRT; (iii) to help the DPC to best select the eruption scenarios run daily by INGV-OE every three hours. A particular novel feature of the new system is the computation of an isopleth map, which helps to identify the region of sedimentation of large clasts (≥5 cm) that could cause injuries to tourists, hikers, guides, and scientists, as well as damage buildings in the proximity of the summit craters. The proposed system could be easily adapted to other volcano observatories worldwide.923 38 - PublicationOpen AccessA new way to reduce the impact from tephra fallout during Etna explosive eruptions(Miscellanea INGV, 2018-09-02)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;The frequent number of explosive events at Mt. Etna, in Italy, over the last ten years, has made necessary the improvement of volcanic ash monitoring and forecasting system at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE). Tephra fallout produced during Etna lava fountains largely impact the population living on the volcano flanks. In addition, during one of the most powerful paroxysms, large clasts fell in proximal areas injured tourists and hikers. To reduce risk, the Italian Department Civil Protection (DPC) asked and funded INGV-OE to do a research project finalized to three specific objectives. First, identify the plume scenario (i.e. weak plume scenario (WPS) and strong plume scenarios (SPS)) based on 1-D plume model. Second, forecast characteristics of tephra deposition using near real time observations. Third, identify the region possibly impacted by large clasts (>5 cm). Two algorithms were developed to measure the column height. One from the calibrated images of two visible cameras installed on the S and W flanks of the volcano, respectively; and the other one from satellite data using a procedure based on the computation of the volcanic plume-top brightness temperature at 10.8 mm. The analysis of lava fountains that occurred between 2011 and 2015 provided the opportunity to differentiate between weak, transitional and strong plumes. The uncertainty associated with eruption source parameters, while maintaining a fixed plume height, was also assessed. In the near future the implementation of these products into the INGV-OE - monitoring room will guarantee a better and timely information to civil protection authorities charged of risk prevention at different levels of responsibility.133 90 - PublicationOpen AccessOperational volcanic ash monitoring during Etna volcanic crises(2018-04-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Operational systems able to monitor volcanic ash in real time and provide both critical eruption parameters and useful warnings to emergency responders and government agencies should be implemented in most volcanic observatories worldwide. Over the past ten years, more than fifty lava fountains occurred at Mt. Etna (Italy) that produced eruption columns more than 10 km a.s.l. and generated large tephra fallout around the volcano flanks. For civil protection purposes, there was the need to improve the already existing monitoring systems daily run at the Istituto Nazionale di Geofisica and Vulcanologia, mainly based on eruption scenarios (weak and strong plume scenarios). We present a new upgraded system that has multiple objectives: i) to have a fast system able to best identify the type of eruptive scenario; ii) to forecast the tephra deposit in near real time, i.e. within a few hours from the eruptive event; iii) to determine the area impacted by clasts larger than 5 cm that could severely injure hikers, guides, and volcanologists and damage infrastructures in proximity of Etna summit craters. This new system is based on the real-time estimate of column height from the analysis of images taken by SEVIRI satellite and by new calibrated cameras and using meteorological parameters obtained by local models.99 19