Options
Ventafridda, Gerardo
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationOpen AccessNon-linear elasticity, earthquake triggering and seasonal hydrological forcing along the Irpinia fault, Southern Italy(2024)
; ; ; ; ; ; ; ; ;; ; ; ;Pump-probe experiments investigate the strain sensitivity of crustal elastic properties, showing nonlinear variations during the strain cycle. In the laboratory, pre-seismic reductions in seismic velocity indicate that asperity contacts within the fault zone begin to fail before the macroscopic frictional sliding. The recognition of such effects in natural seismic-cycles has been challenging. Here we exploit seasonal hydrological strains, performing a natural analogue to a quasi-static laboratory pump-probe experiment to investigate the nonlinear strain sensitivity of crustal rocks and its role in seismic failure along the tectonically-active Irpinia Fault System (Southern Italy). By comparing 14-years-long series of spring discharge, strain, seismic velocity variations and earthquakes rate, we find that seismicity peaks during maximum hydrological forcing and minimum seismic velocity. Seasonal strains of ~10-6 are required for both earthquake triggering and significant nonlinearity effects arising from modulus reduction. We suggest that, for faults in a critical state, cyclical softening may lead to failure and seasonal seismicity. - PublicationOpen AccessTransient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy)We present GPS, hydrological, and GRACE (Gravity Recovery and Climate Experiment) observations in southern Apennines (Italy) pointing to a previously unnoticed response of the solid Earth to hydrological processes. Transient patterns in GPS horizontal time series near to large karst aquifers are controlled by seasonal and interannual phases of groundwater recharge/discharge of karst aquifers, modulating the extensional ∼3 mm/yr strain within the tectonically active Apennines. We suggest that transient signals are produced, below the saturation level of the aquifers and above a poorly constrained depth in the shallow crust, by time‐dependent opening of subvertical, fluid‐filled, conductive fractures. We ascribe this process to the immature karstification and intense tectonic fracturing, favoring slow groundwater circulation, and to multiyear variations of the water table elevation, influenced by variable seasonal recharge. The vertical component displays seasonal and multiyear signals more homogeneously distributed in space and closely correlated with estimates of total water storage from GRACE, reflecting the elastic response of the lithosphere to variations of surface water loads. The different sensitivities of vertical and horizontal components to the hydrologically induced deformation processes allow us to spatially and temporally resolve the different phases of the water cycle, from maximum hydrological loading at the surface to maximum hydrostatic pressure beneath karst aquifers. Finally, we suggest that transient deformation signals in the geodetic series of the Apennines are correlated to large‐scale climatic patterns (Northern Atlantic Oscillation) through their influence on precipitation variability and trends at the regional scale.
161 110