Options
Ferranti, Luigi
Loading...
Preferred name
Ferranti, Luigi
Alternative Name
Ferranti, L.
37 results
Now showing 1 - 10 of 37
- PublicationOpen AccessQUIN 2.0 - new release of the QUaternary fault strain INdicators database from the Southern Apennines of Italy(2024-02-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ;QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.35 5 - PublicationOpen AccessQUIN 2.0 - new release of the QUaternary fault strain INdicators database from the Southern Apennines of Italy(2024-02-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ;QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.3 2 - PublicationOpen AccessFault systems in the offshore sector of the Campi Flegrei caldera (southern Italy): Implications for nested caldera structure, resurgent dome, and volcano-tectonic evolution(2022-09-17)
; ; ; ; ; ; ; ; ; ;; ; ; ; ;The structure of a caldera may influence its activity, making its understanding crucial for hazard assessment. Here, we analysed high-resolution seismic profiles in the Campi Flegrei (southern Italy) offshore sector. We recognised two main fault systems, including those associated with the formation of the caldera and those affecting the resurgent dome. The former system comprises three broadly concentric fault zones (inner, medial and outer ring fault zones) depicting a nested caldera geometry. Considering the relations between faults and seismic units that represent the marine and volcaniclastic successions filling the caldera, all ring faults were formed during the Campanian Ignimbrite eruption (40 ka) and subsequently reactivated during the Neapolitan Yellow Tuff eruption (15 ka). In this last caldera-forming event, the inner and medial fault zones accommodated most of the collapse and were episodically reactivated during the younger volcano-tectonic activity. The second fault system occurs in the apical zone of the resurgent dome and comprises dominantly high-angle normal faults that are mainly related to the volcanotectonic collapse that followed the Agnano-Monte Spina Plinian eruption (4.55 ka). Finally, we provide a volcano-tectonic evolutionary model of the last 40 kyr, considering the interplay among ring and dome faults activity, volcaniclastic sedimentation, ground deformation and sea-level changes.39 5 - PublicationOpen AccessIntegrated on‐land‐offshore stratigraphy of the Campi Flegrei caldera: new insights into the volcano‐tectonic evolution in the last 15 kyr(2022-01-02)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.51 7 - PublicationOpen AccessAn Integrated Multiscale Method for the Characterisation of Active Faults in Offshore Areas. The Case of Sant’Eufemia Gulf (Offshore Calabria, Italy)(2021-06-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Diagnostic morphological features (e.g., rectilinear seafloor scarps) and lateral offsets of the Upper Quaternary deposits are used to infer active faults in offshore areas. Although they deform a significant seafloor region, the active faults are not necessarily capable of producing large earthquakes as they correspond to shallow structures formed in response to local stresses. We present a multiscale approach to reconstruct the structural pattern in offshore areas and distinguish between shallow, non-seismogenic, active faults, and deep blind faults, potentially associated with large seismic moment release. The approach is based on the interpretation of marine seismic reflection data and quantitative morphometric analysis of multibeam bathymetry, and tested on the Sant’Eufemia Gulf (southeastern Tyrrhenian Sea). Data highlights the occurrence of three major tectonic events since the Late Miocene. The first extensional or transtensional phase occurred during the Late Miocene. Since the Early Pliocene, a right-lateral transpressional tectonic event caused the positive inversion of deep (>3 km) tectonic features, and the formation of NE-SW faults in the central sector of the gulf. Also, NNE-SSW to NE-SW trending anticlines (e.g., Maida Ridge) developed in the eastern part of the area. Since the Early Pleistocene (Calabrian), shallow (<1.5 km) NNE-SSW oriented structures formed in a left-lateral transtensional regime. The new results integrated with previous literature indicates that the Late Miocene to Recent transpressional/transtensional structures developed in an ∼E-W oriented main displacement zone that extends from the Sant’Eufemia Gulf to the Squillace Basin (Ionian offshore), and likely represents the upper plate response to a tear fault of the lower plate. The quantitative morphometric analysis of the study area and the bathymetric analysis of the Angitola Canyon indicate that NNE-SSW to NE-SW trending anticlines were negatively reactivated during the last tectonic phase. We also suggest that the deep structure below the Maida Ridge may correspond to the seismogenic source of the large magnitude earthquake that struck the western Calabrian region in 1905. The multiscale approach contributes to understanding the tectonic imprint of active faults from different hierarchical orders and the geometry of seismogenic faults developed in a lithospheric strike-slip zone orthogonal to the Calabrian Arc.160 35 - PublicationOpen AccessLate Quaternary coastal uplift of southwestern Sicily, central Mediterranean sea(2021-03-01)
; ; ; ; ; ; ; ; ; ; ; Mapping and luminescence aging of raised marine terraces and aeolian ridges along an ∼90 km coastal stretch in southwestern Sicily provide the first quantitative assessment of vertical tectonic deformation in this region, which spans the frontal part of an active thrust belt. We recognized a staircase of eleven terraces and nine related aeolian ridges. The elevation profile of terraces parallel to the coast shows a >90 km long bell-shaped pattern, onto which shorter-wavelength (∼10 km long) undulations are superimposed. Luminescence ages from terraced beach deposits and aeolian sediments constrain the position of paleoshorelines formed during MIS 5e, 7a and 7c, with a maximum uplift rate of ∼0.75 mm/a, and indicate a late Middle-Late Pleistocene (80–400 ka) age for the sequence of terraces. The elevation of Lower Pleistocene morpho-depositional markers points that uplift may have occurred at similar rates at the beginning of the Early Pleistocene, but almost zeroed between ∼1.5 and 0.4 Ma before the recent renewal. The uneven elevation of Middle-Upper Pleistocene paleoshorelines observed moving along the coast documents that uplift embeds both a regional and a local component. The regional, symmetric bell-shaped uplift is related to involvement in the thrust belt of thicker crustal portions of the northern African continental margin. The short-wavelength undulations represent the local component and correspond to actively growing bedrock folds. The present study contributes to unravel the different spatial and temporal scales of deformation processes at a collisional margin.166 176 - PublicationOpen AccessNew Evidence of MIS 3 Relative Sea Level Changes from the Messina Strait, Calabria (Italy)(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ; ; ;Investigation of sea-level positions during the highly-dynamic Marine Isotope Stage 3 (MIS 3: 29–61 kyrs BP) proves difficult because: (i) in stable and subsiding areas, coeval coastal sediments are currently submerged at depths of few to several tens of meters below the present sea level; (ii) in uplifting areas, the preservation of geomorphic features and sedimentary records is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at a depth of −130 m, followed by marine transgression that determined the development of ravinement surfaces. This study discusses previous research in the Mediterranean and elsewhere, and describes new fossiliferous marine deposits overlaying the metamorphic bedrock at Cannitello (Calabria, Italy). Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these deposits, presently between 28 and 30 m above sea level, formed during MIS 3.1. Elevation correction of the Cannitello outcrops (considered in an intermediate-to-far-field position with respect to the ice sheet) with the local vertical tectonic rate and Glacial Isostatic Adjustment (GIA) rate allows the proposal of a revision of the eustatic depth for this highstand. Our results are consistent with recently proposed estimates based on a novel ice sheet modelling technique52 18 - PublicationOpen AccessA Large Paleoearthquake in the Central Apennines, Italy, Recorded by the Collapse of a Cave Speleothem(2020-10)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Speleoseismological research carried out in the Central Apennines (Italy) contributed to understanding the behavior of active normal faults that are potentially able to generate Mw 6.5–7 earthquakes documented by paleoseismology and by historical and instrumental seismology. Radiometric (U‐Th, AMS‐14C, and bulk‐14C) dating of predeformation and postdeformation layers from collapsed speleothems found in Cola Cave indicates that at least three speleoseismic events occurred in the cave during the last ~12.5 ka and were ostensibly caused by seismic slip on one or more of the active faults located in the region surrounding the cave. We modeled the collapse of a tall (173 cm high) stalagmite to find a causative association of this event with one among the potential seismogenic sources. We defined the uniform hazard spectrum (UHS) for each seismogenic source at the site, and we used the calculated spectra in a deterministic approach to study the behavior of the speleothem, through a numerical finite element modeling (FEM). Although our analysis suggests the “Liri” fault as the most likely source responsible for the ground shaking recorded in the cave, the “Fucino” fault system, responsible for a Mw 7 earthquake in 1915, cannot be excluded as a potential source of speleoseismic damage. Results of this work provide new constraints on the seismotectonic history of this sector of Central Apennines and highlight the performance of integrated speleoseismological, seismic hazard, and numerical studies.107 79 - PublicationRestrictedThe 847 CE earthquake in central-southern Italy: New hints from archaeosismological and geophysical investigations in the Volturno River Valley area(2020-01-05)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Integration of archaeoseismic observations, geological and geophysical surveys and a critical review of historical written sources contributed to shed light on the effects of the 847 earthquake AD that struck a large area of Southern-Central Italy. New archaeoseismic evidence of a strong earthquake comes from two Medieval archaeological sites along the Volturno Valley, between Campania and Molise regions, which occurred around the middle of the ninth century AD. Evidence includes the tilting of pillars in the Basilica of Santa Maria near Alvignano (northern Campania) and a collapsed masonry wall in the Abbey of San Vincenzo al Volturno near Isernia (northern Molise). At Alvignano, a site so far unrecorded in seismic catalogues for the 847 earthquake, geoelectrical and georadar investigations were used to explore the subsoil and study local site conditions, which could have influenced coseismic ground motion. Integrated interpretation of geophysical surveys and borehole logs document the presence of altered pyroclastic deposits, which certainly enhanced site effects at Alvignano. Analysis of damage descriptions and of archaeological reports indicate that the 847 seismic event documented by historical sources damaged a wide area between Latium, Campania and Molise, with destruction of the town of Isernia. Although historical sources did not explicitly mention damage in Rome, seismic effects attributed to the 847 event are recorded in the archaeological and seismological literature. Because the damaged area for this medieval earthquake is loosely defined due to the scanty documentation, the present study represents an important contribution to better define the shaking area and provide new hints on the extent and location of the possible seismogenic source.350 2 - PublicationRestrictedGrain size and grain size distribution of a lithified fault core in carbonates rocks using multi-scale image analysis: The example of the San Benedetto-Gioia dei Marsi fault (Central Italy)(2020)
; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;; Analyses of three oriented rock samples collected in the footwall of a major normal fault in Central Italy provide insights into textural properties of a lithified carbonate fault core. Data from lithified fault rocks are very rare and we document here the grain size distribution in a fault core at an unprecedented scale range, which complements already existing observations obtained from sieve, sedimentation and/or laser diffraction methods in loose deposits. X-ray powder diffraction analysis shows that the samples, which are located at a mutual distance of few tens of meters, are exclusively made of calcite. Mesoscopic samples and polished thin sections oriented normal to the fault plane have been analysed with high resolution scanner (HRS), transmission optical microscopy (TOM) and scanning electron microscopy in back-scattered mode (BS-SEM). Textural features of tectonised calcite crystals have been quantified using image analysis on digitalised photographs at magnifications from 1:1 to 9000:1, documenting size dimensions of grains from cm to sub-μm. The obtained D values have average values of 1.65 in 2D, overlapping with those independently obtained by box-counting methods in the core of the same fault by previous authors. Textures of calcite clasts in tectonised and lithified rocks can be appropriately quantified by the analytical protocols proposed here. This work represents the first multi-scale image analysis, from sub- μm to cm sizes, of the core portion of a normal fault that cut into carbonate rocks. Our study provides a template for similar investigations to be carried on other faults that will help to better understand the relations between fault textures and deformation processes.107 4