Options
Pezzo, Giuseppe
Loading...
Preferred name
Pezzo, Giuseppe
Email
giuseppe.pezzo@ingv.it
Staff
staff
ORCID
Scopus Author ID
54409164700
51 results
Now showing 1 - 10 of 51
- PublicationOpen AccessInsights into post-emplacement lava flow dynamics at Mt. Etna volcano from 2016 to 2021 by synthetic aperture radar and multispectral satellite data(2023-09-15)
; ; ; ; ; ; ; ; ; ; ; ; ; Post-emplacement dynamics of lava flows is governed by several factors such as poroelastic deformation of the substrate; gravity-induced repacking and rearrangement of the vesicle-bearing fluid lava and other void spaces by superposed flows; lava densification processes; viscoelastic strain relaxation of the ground caused by the lava load; thermal cooling and contraction of the solid lava; and discrete motion of surface blocks. Here we investigate postemplacement lava flow dynamics at the Mt. Etna volcano, and we infer on the possible causes by exploiting optical and radar satellite data. Synthetic aperture radar data from Sentinel-1 satellite mission provided high-resolution horizontal and vertical displacement rates and displacement time series of the lava flows emplaced on the Mt. Etna volcano summit from January 2016 to July 2021. Sentinel-2 multispectral data allowed to identify the lava flows boundaries emplaced during the December 2018 and May 2019 paroxysms. Finally, high resolution COSMO-SkyMed radar data allowed to account for the topographic changes generated by the lava emplacement by means of stereo radargrammetry technique. Such an unprecedented dataset provided a full picture of the lava flow dynamics, whose kinematics is governed lava cooling, which in turn produce thermal contraction of the lava body and viscous compaction of the underlying substrate. Both phenomena act at different periods, being the thermal contraction predominant for recent lava flows. Downslope sliding is also invoked, especially for recent lava flows emplaced on high slope areas.96 32 - PublicationOpen AccessProgressive underplating of mafic material at mid-crustal depth beneath Ischia volcano, Italy(2023-08-29)
; ; ; ; ; ; ;The destructive (Mw 3.9) earthquake of 21 August 2017 re-opened the question on where magma resides at the Ischia island volcano. The peculiar complexity of the seismic source initiated the debate on the involvement of fluid-related processes, but the magmatic origin of the event remains uncertain. Here we use ground displacement and broadband seismic data to investigate the magmatic system of Ischia volcano, where progressive underplating of mafic material at mid-crustal depth feeds the deep structures, which are characterized by exceptionally high seismic velocity and are connected with a shallow crystal mush. Although no direct evidence of large molten volumes was found, strong anisotropy suggests that the crystal mush is pervaded by magma-intruded dykes. We propose that the 2017 event was due to a negative tensile deformation caused by depressurization of supercritical fluids along a shallow southwest (SW-)-dipping fault defined by receiver functions (RFs) data, which acted as a valve regulating the overpressure of deep magmatic fluids.31 20 - PublicationOpen AccessSeismic source identification of the 9 November 2022 Mw 5.5 offshore Adriatic sea (Italy) earthquake from GNSS data and aftershock relocation(2023-07-16)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;; ;The fast individuation and modeling of faults responsible for large earthquakes are fundamental for understanding the evolution of potentially destructive seismic sequences. This is even more challenging in case of buried thrusts located in offshore areas, like those hosting the 9 November 2022 Ml 5.7 (Mw 5.5) and ML 5.2 earthquakes that nucleated along the Apennines compressional front, offshore the northern Adriatic Sea. Available on- and offshore (from hydrocarbon platforms) geodetic observations and seismological data provide robust constraints on the rupture of a 15 km long, ca. 24° SSW-dipping fault patch, consistent with seismic reflection data. Stress increase along unruptured portion of the activated thrust front suggests the potential activation of longer portions of the thrust with higher magnitude earthquake and larger surface faulting. This unpleasant scenario needs to be further investigated, also considering their tsunamigenic potential and possible impact on onshore and offshore human communities and infrastructures.68 20 - PublicationOpen AccessJoint Inversion of Geodetic and Strong Motion Data for the 2012, Mw 6.1–6.0, May 20th and May 29th, Northern Italy Earthquakes: Source Models and Seismotectonic Interpretation(2023-04)
; ; ; ; ; ; ; ; ; Abstract We present the first rupture models of the two mainshocks of the 2012 northern Italy sequence, determined by jointly inverting seismic and geodetic data. We aim at providing new insights into the mainshocks for which contrasting seismotectonic interpretations are proposed in literature. Sources' geometric parameters were constrained by seismic reflection profiles, 3-D relocations and focal mechanisms of mainshocks/aftershocks. Site-specific velocity profiles were used to model accelerograms affected by strong propagation effects related to the Po basin. Our source models differ significantly from previous ones relying on either seismic or geodetic data. Their comparison against geological sections and aftershock distribution provides new insights about the ruptured thrust faults. The May 20th Mw6.1 mainshock activated the Middle Ferrara thrust-ramp dipping ∼45° SSW-wards, breaking a main eastern slip patch 4–15 km deep in Mesozoic carbonates (maximum slip 0.7–0.8 m) and Paleozoic-Triassic basement rocks, and a small western patch in the basement. The May 29th Mw6.0 mainshock featured two separated asperities along the Mirandola thrustramp dipping ∼42° S-wards: an eastern asperity 4–15 km deep in Mesozoic carbonates and basement rocks (maximum slip 0.7 m) and a deeper western one (7–16 km depth) mainly in the basement (slip peak 0.8 m). On-fault aftershocks were concentrated within the basement and Mesozoic carbonates, devoiding highslip zones. Slip and aftershock distribution was controlled by the rheological transition between Mesozoic carbonates and Cenozoic sediments. Unlike previous thin-skinned tectonic interpretations, our results point to a complex rupture process along moderately dipping (40°–45°) thrust-ramps deeply rooted into the Paleozoic crystalline basement. Plain Language Summary The two M6 mainshocks of the 2012 Italy sequence are the strongest earthquakes ever observed in the Po Plain, a strategic region for the Italian economy. The mainshocks ruptured blind thrust-faults, however their source models and seismotectonic interpretation are still debated because the thrust-system architecture is controversial. Contrasting thick-skinned and thin-skinned tectonic models are proposed. In thick-skinned interpretations, shortening is accommodated by thrust-ramps rooted into the crystalline basement that represent main seismogenic structures, whereas in thin-skinned interpretations, shortening and seismicity are controlled by listric faults splaying out from dècollement levels in the sedimentary crust. A comprehensive analysis of the mainshocks' source represents an opportunity to provide new insights into the seismogenesis in northern Italy and on a broader scale into seismotectonics of thrust-and-fold belts. We get a complete picture of the mainshocks kinematics by jointly inverting, for the first time, seismic and geodetic data, and unravel rupture heterogeneities not resolved by previous studies. By integrating source models with aftershock locations and geological models, we propose a comprehensive seismotectonic interpretation of the sequence. We conclusively identify the ruptured faults that correspond to thrust-ramps rooted into the crystalline basement and evidence the key role played by lithological changes in the rupture process.95 18 - PublicationOpen AccessImplications for the geometry of plate boundaries in NE Asia based on the geodetic analysis of the 2020Mw 6.4 Koryak event(2023-02-27)
; ; ; ; ; ; ; ; ;; ; On the 9th of January 2020, an Mw 6.4 strike-slip earthquake took place north of the Asian margin of the Bering Sea. The earthquake occurred within the known reverse-right-lateral active fault zone, called Khatyrka–Vyvenka, which transverses the Koryak Highland from SE to NW and is thought to be a surface manifestation of the Asian portion of either the Bering plate boundary or the northern edge of the Alaskan stream. No other strong earthquake has ever been recorded in this remote uninhabited area and the few existing seismic stations provide poor quality earthquake locations.We adopt SAR interferometry (InSAR) technique to define an improved location of the Koryak 2020 earthquake and constrain the seismic source. The analysis of the 2020 event revealed a previously unknown active fault of left-lateral kinematics that is possibly hidden and strikes NWtransversely to the Khatyrka–Vyvenka fault zone. Although several mechanisms could account for left-lateral kinematics of this fault, we propose that the structure is part of a more extended NW fault structure, that formed in pre-neotectonic times and has played a role of a pre-existing rheological discontinuity. This revived NW structure together with a similar structure located easterly, so far aseismic, make the plate/stream boundary segmented, step-like in plan view. The step-like boundary geometry may be the result of internal transform deformation of a rigid plate, but it is better explained by deflections of the Alaskan stream edge at local crustal asperities, which are pre-Cenozoic terrains.93 9 - PublicationOpen AccessCoupling Flank Collapse and Magma Dynamics on Stratovolcanoes: The Mt. Etna Example from InSAR and GNSS Observations(2023-02-02)
; ; ; ; ; ; ; ; ; ; ; ; ; Volcano ground deformation is a tricky puzzle in which different phenomena contribute to the surface displacements with different spatial–temporal patterns. We documented some high variable deformation patterns in response to the different volcanic and seismic activities occurring at Mt. Etna through the January 2015–March 2021 period by exploiting an extensive dataset of GNSS and InSAR observations. The most spectacular pattern is the superfast seaward motion of the eastern flank. We also observed that rare flank motion reversal indicates that the short‐term contraction of the volcano occasionally overcomes the gravity‐controlled sliding of the eastern flank. Conversely, fast dike intrusion led to the acceleration of the sliding flank, which could potentially evolve into sudden collapses, fault creep, and seismic release, increasing the hazard. A better comprehension of these interactions can be of relevance for addressing short‐term scenarios, yielding a tentative forecasting of the quantity of magma accumulating within the plumbing system.85 25 - PublicationOpen AccessPresent-Day Surface Deformation in North-East Italy Using InSAR and GNSS Data(2023)
; ; ; ; ; ; ; ; ; ; ;; ;; ;Geodetic data can detect and estimate deformation signals and rates due to natural and anthropogenic phenomena. In the present study, we focus on northeastern Italy, an area characterized by ~1.5–3 mm/yr of convergence rates due to the collision of Adria-Eurasia plates and active subsidence along the coasts. To define the rates and trends of tectonic and subsidence signals, we use a Multi-Temporal InSAR (MT-InSAR) approach called the Stanford Method for Persistent Scatterers (StaMPS), which is based on the detection of coherent and temporally stable pixels in a stack of single-master differential interferograms. We use Sentinel-1 SAR images along ascending and descending orbits spanning the 2015–2019 temporal interval as inputs for Persistent Scatterers InSAR (PSI) processing. We apply spatial-temporal filters and post-processing steps to reduce unrealistic results. Finally, we calibrate InSAR measurements using GNSS velocities derived from permanent stations available in the study area. Our results consist of mean ground velocity maps showing the displacement rates along the radar Line-Of-Sight for each satellite track, from which we estimate the east–west and vertical velocity components. Our results provide a detailed and original view of active vertical and horizontal displacement rates over the whole region, allowing the detection of spatial velocity gradients, which are particularly relevant to a better understanding of the seismogenic potential of the area. As regards the subsidence along the coasts, our measurements confirm the correlation between subsidence and the geological setting of the study area, with rates of ~2–4 mm/yr between the Venezia and Marano lagoons, and lower than 1 mm/yr near Grado.79 16 - PublicationOpen AccessCross-validated multi-technique geodetic dataset of the Upper Adriatic Sea coastal area of Italy(2022-08)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The geodetic dataset used in the research article entitled "Multi-technique geodetic detection of onshore and offshore subsidence along the Upper Adriatic Sea coasts"[1] is presented here. It consists of the outcomes of three different techniques, i.e. Synthetic Aperture Radar Interferometry (InSAR), Global Navigation Satellite System (GNSS) and topographic Levelling surveys. This dataset has been used for the estimation of onshore and offshore deformation in a mineral concession area located along the Upper Adriatic Sea coastal area (Italy), South-East of Ravenna city. InSAR data covers the period from 2002 to 2018, GNSS data from 1998 to 2018 and levelling data from 2002 to 2017.The different measurements have been cross-validated and referred to a common local reference system fixed in the urban area of Ravenna. This data collection will be very useful for deepening the analysis of any type of deformation in the Ravenna coastal area.605 28 - PublicationOpen AccessMulti-technique geodetic detection of onshore and offshore subsidence along the Upper Adriatic Sea coasts(2022-03)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; We assess about 20 years of onshore and offshore subsidence along a sector of the Upper Adriatic Sea (Italy) coastal areas affected by natural soil compaction and intense anthropogenic activities such as aquifers exploitation and hydrocarbons extraction. Our approach is based on the synergistic use of independent remote sensing and in-situ geodetic data to detect and spatially characterise the deformation pattern by cross-validating the different available measurements. We collect extensive datasets from i) SAR images provided by Envisat, Cosmo- SkyMed and Sentinel-1 missions, ii) GNSS measurements from continuous stations managed by public institutions, local authorities and private companies and iii) Leveling surveys. The cross-validation analysis shows good agreement among all the independent datasets, thus providing a reliable assessment of the ongoing deformation. We detect an onshore and offshore subsidence peak of about 1/-1.5 cm/yr in the proximity of the coastline, close to Lido di Dante and Fiumi Uniti villages, and at the present offshore platform. The outcomes highlight how the integration of different remote sensing and in situ geodetic techniques is successful to retrieve deformation history in time and space in complex areas, where different natural and anthropogenic sources concur to the overall deformation pattern. Moreover, such approach provides a robust support to modelling studies for hazard assessment in both inland and shoreline areas.1077 76 - PublicationOpen AccessRotation at subduction margins: How complexity at fault‐scale (the 2019 Albanian Mw 6.4 earthquake) mirrors the regional deformation(2022)
; ; ; ; ; A variety of tectonic processes spread along the circum-Mediterranean orogenic belts driven by the convergence of major plates, episodes of slab retreat and lateral and vertical mantle flows. Here, we provide an updated view of crustal stress and strain-rate fields for the Albanides belt in the eastern Adria-Eurasia convergence boundary. We framed a new geodetic-based source model for the 2019 Mw6.4 Durrёs earthquake in light of the regional deformation, propending for a transpressional west-dipping seismogenic fault. Our results highlight a fault-scale complexity which mirrors the long-time scale deformation of the Albanides plate boundary, where the rotation induced by the fast Hellenic rollback is accommodated also by transpression on inherited structures.206 52