Options
Torricella, Fiorenza
Loading...
Preferred name
Torricella, Fiorenza
ORCID
7 results
Now showing 1 - 7 of 7
- PublicationOpen AccessPaleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association(2023-08-20)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ;TR17-08, a marine sedimentary core (14.6 m), was collected during 2017 from the Edisto Inlet (Ross Sea, Antarctica), a small fjord near Cape Hallett. The core is characterized by expanded laminated sedimentary sequences making it suitable for studying submillennial processes during the Early Holocene. By studying different well-known foraminifera species (Globocassidulina biora, G. subglobosa, Trifarina angulosa, Nonionella iridea, Epistominella exigua, Stainforthia feylingi, Miliammina arenacea, Paratrochammina bartrami and Portatrochammina antarctica), we were able to identify five different foraminiferal assemblages over the last ∼ 2000 years BP. Comparison with diatom assemblages and other geochemical proxies retrieved from nearby sediment cores in the Edisto Inlet (BAY05-20 and HLF17-1) made it possible to distinguish three different phases characterized by different environmental settings: (1) a seasonal phase (from 2012 to 1486 years BP) characterized by the dominance of calcareous species, indicating a seasonal opening of the inlet by more frequent events of melting of the sea-ice cover during the austral summer and, in general, a higher-productivity, more open and energetic environment; (2) a transitional phase (from 1486 to 696 years BP) during which the fjord experienced less extensive sea-ice melting, enhanced oxygen-poor conditions and carbonate dissolution conditions, indicated by the shifts from calcareous-dominated association to agglutinated-dominated association probably due to a freshwater input from the retreat of three local glaciers at the start of this period; and (3) a cooler phase (from 696 years BP to present) during which the sedimentation rate decreased and few to no foraminiferal specimens were present, indicating ephemeral openings or a more prolonged cover of the sea ice during the austral summer, affecting the nutrient supply and the sedimentation regime.87 15 - PublicationOpen AccessCryptotephras in the marine sediment record of the Edisto Inlet, Ross Sea: Implications for the volcanology and tephrochronology of northern Victoria Land, Antarctica(2023-04-10)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;We present the results of the tephrochronology study of a 14.49 m long marine sediment core (TR 17–08) collected in the Edisto Inlet, Ross Sea (Antarctica). The core contains four cryptotephra layers at 55–56, 512–513, 517–518, and 524–525 cm of depth, which have been characterised by a detailed description of the texture, mineral assemblage, and single glass shards major and trace element geochemistry. The age model of the investigated sedimentary sequence, based on radiocarbon dating, indicates that the topmost cryptotephra correlates with the widespread 1254 CE tephra erupted by a historical eruption (696 ± 2 cal yrs BP) of Mount Rittmann, in northern Victoria Land. Deeper cryptotephra layers were derived from previously unknown explosive eruptions of Mount Melbourne volcano and were emplaced between 1615 cal yrs BP and 1677 cal yrs BP, e.g. between the 3rd and 4th centuries CE. This discovery demonstrates that the Mount Melbourne volcanic complex has been highly active in historical times allowing significant progress in the current understanding of regional eruptive history. Moreover, from a tephrochronological point of view, the detected cryptotephra provide new regional isochron markers to facilitate high-precision correlations and help stratigraphically constrain changes in environmental and climatic conditions that are identified by multidisciplinary studies.197 44 - PublicationOpen AccessMultiproxy investigation of the last 2,000 years BP marine paleoenvironmental record along the western Spitsbergen margin(2022-11-01)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; A reconstruction of the last 2,000 years BP of environmental and oceanographic changes on the western margin of Spitsbergen was performed using a multidisciplinary approach including the fossil assemblages of diatoms, planktic and benthic foraminifera and calcareous nannofossils and the use of geochemistry (X-ray fluorescence spectroscopy, X-ray diffraction). We identified two warm periods (2,000–1,600 years BP and 1,300–700 years BP) that were associated with the Roman Warm Period and the Medieval Warm Period that alternate with colder oceanic conditions and sea ice coverage occurred during the Dark Ages (1,600–1,300 years BP) and the beginning of the Little Ice Age. During the Medieval Warm Period the occurrence of ice-rafted debris and Aulocoseira spp., a specific diatom genus commonly associated with continental freshwater, suggests significant runoff of meltwaters from local glaciers.94 48 - PublicationOpen AccessGlaciomarine sediment deposition on the continental slope and rise of the central Ross Sea since the Last Glacial MaximumThe continental margin of the Ross Sea has been consistently sensitive to the advance and retreat of the Ross Ice Sheet (RIS) between the interglacial and glacial periods. This study examines changes of the glaciomarine sedimentation on the continental slope and rise to the eastern side of Hillary Canyon in the central Ross Sea, using three gravity cores collected at increasing water depths. Besides older AMS 14C ages of bulk sediments, based on the analytical results, sediment lithology was divided into units A, B1, and B2, representing Holocene, deglacial, and glacial periods, respectively. The sedimentation rate decreased as the water depth increased, with a higher sedimentation rate in the deglacial period (unit B1) than the Holocene (unit A). Biological productivity proxies were significantly higher in glacial unit B2 than in interglacial unit A, with transitional values observed in deglacial unit B1. Biological productivity generally decreased in the Antarctic continental margin during the glacial period because of extensive sea ice coverage. The higher biogenic contents in unit B2 are primarily attributed to the increased transport of eroded and reworked shelf sediments that contained abundant biogenic components to the continental slope and rise beneath the advancing RIS. Thus, glacial sedimentation on the continental slope and rise of the central Ross Sea was generally governed by the activity of the RIS, which generated melt-water plumes and debris flows at the front of the grounding line, although the continental rise might have experienced seasonally open conditions and lateral effects due to the bottom current.
148 80 - PublicationOpen AccessPreservation of Modern and MIS 5.5 Erosional Landforms and Biological Structures as Sea Level Markers: A Matter of Luck?(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;The Mediterranean Basin is characterized by a significant variability in tectonic behaviour, ranging from subsidence to uplifting. However, those coastal areas considered to be tectonically stable show coastal landforms at elevations consistent with eustatic and isostatic sea level change models. In particular, geomorphological indicators—such as tidal notches or shore platforms—are often used to define the tectonic stability of the Mediterranean coasts. We present the results of swim surveys in nine rocky coastal sectors in the central Mediterranean Sea using the Geoswim approach. The entire route was covered in 22 days for a total distance of 158.5 km. All surveyed sites are considered to have been tectonically stable since the last interglacial (Marine Isotope Stage 5.5 [MIS 5.5]), because related sea level markers fit well with sea level rise models. The analysis of visual observations and punctual measurements highlighted that, with respect to the total length of surveyed coast, the occurrence of tidal notches, shore platforms, and other indicators accounts for 85% of the modern coastline, and only 1% of the MIS 5.5 equivalent. Therefore, only 1% of the surveyed coast showed the presence of fossil markers of paleo sea levels above the datum. This significant difference is mainly attributable to erosion processes that did not allow the preservation of the geomorphic evidence of past sea level stands. In the end, our research method showed that the feasibility of applying such markers to define long-term tectonic behaviour is much higher in areas where pre-modern indicators have not been erased, such as at sites with hard bedrock previously covered by post-MIS 5.5 continental deposits, e.g., Sardinia, the Egadi Islands, Ansedonia, Gaeta, and Circeo. In general, the chances of finding such preserved indicators are very low.70 22 - PublicationOpen AccessEnvironmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum(2021)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.307 34 - PublicationRestrictedEvidence for a large-magnitude Holocene eruption of Mount Rittmann (Antarctica): A volcanological reconstruction using the marine tephra record(2020)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In Antarctica, the near-source exposures of volcanic eruption deposits are often limited as they are not well preserved in the dynamic glacial environment, thus making volcanological reconstructions of explosive eruptions extremely challenging. Fortunately, pyroclastic deposits from explosive eruptions are preserved in Southern Ocean sediments surrounding Antarctica, and the tephrostratigraphy of these sequences offers crucial volcanological information including the timing and tempo of past eruptions, their magnitude, and eruption dynamics. Here we report the results of a tephrostratigraphy and tephrochronology study focused on four sediment cores recovered from the Wood Bay area in the western Ross Sea, Antarctica. In all these sedimentary sequences, we found a well-stratified primary tephra of considerable thickness, up to 80 cm, hereafter named the Aviator Tephra (AVT). According to the characteristics of the tephra deposit and its distribution, the AVT was associated with an eruption of considerable intensity, potentially representing one of the largest Holocene eruptions recorded in Antarctica. Based on the major and trace element geochemistry and the mineral assemblage of the tephra, Mount Rittmann was identified as the source of the AVT. A Holocene age of ∼11 ka was determined by radiocarbon dating organic material within the sediments and 40Ar-39Ar dating of alkali-feldspar crystals included in the tephra. Eruption dynamics were initially dominated by hydromagmatic magma fragmentation conditions producing a sustained, relatively wet and ash-rich eruptive cloud. The eruption then evolved into a highly energetic, relatively dry magmatic Plinian eruption. The last phase was characterized by renewed efficient magma-water interaction and/or collapse of the eruptive column producing pyroclastic density currents and associated co-ignimbritic plumes. The distal tephra deposits might be linked to the widespread lag breccia layer previously identified on the rim of the Mount Rittmann caldera which share the same geochemical composition. Diatoms found in the sediments surrounding the AVT and the primary characteristics of the tephra indicate that the Wood Bay area was open sea at the time of the eruption, which is much earlier than previously thought. AVT is also an excellent tephrostratigraphic marker for the Wood Bay area, in the Ross Sea, and a useful marker for future synchronization of continental ice and marine archives in the region.1009 16