Options
Correale, Alessandra
Loading...
Preferred name
Correale, Alessandra
Email
alessandra.correale@ingv.it
Staff
staff
16 results
Now showing 1 - 10 of 16
- PublicationOpen AccessThe December 2018 eruption at Etna volcano: a geochemical study on melt and fluid inclusions(2023)
; ; ; ; ; ; ; ; ; This study focus on the Mt Etna December 2018 eruption with the aim of investigating the geochemical characteristics of the feeding magma. New data on major and trace element geochemistry of olivine-hosted melt inclusions (MI) in volcanic products are presented together with the noble gas geochemistry of fluid inclusions (FI) in olivines. The noble gas geochemistry of fluid inclusions (FIs) in olivines was also investigated. The major element composition of MIs is variable from tephrite/trachybasalt to phonotephrite/basaltic trachyandesite, with SiO2 = 45.51–52.72 wt%, MgO = 4.01–6.02 wt%, and CaO/Al2O3 = 0.34–0.72. Trace element patterns of MIs present a typical enrichment in LILE and LREE, depletion in HFSE, and relatively fractionated REE patterns: (La/Lu) N= 18.8–41.08, with Eu/Eu* = (0.5–1.8). Positive anomalies in Sr (Sr/Sr* = 0.8–2.3) and Ba can be ascribed to the assimilation of plagioclase-rich cumulates in the magmatic reservoir. The variable Ba/La (9.8–15.8), K/Nb (260–1037), Ce/Nb (1.9–3.4), Rb/La (0.4–1.6), and Ba/Nb (10.8–25.8) ratios reveal mixing between two types of end-member magmas comparable to those emitted from 1) the 2001 Upper Vents and 2002–03 Northern Fissures (Type-1) and 2) the 2001 Lower Vents and 2002–03 Southern Fissures (Type-2), respectively. Type-2 represents a magma that was under the influence of a crustal component, whereas Type-1 is compatible with a HIMU–MORB-type heterogeneous mantle source. It appears that the 2018 MIs have captured the two different types of magmas, and the lack of homogenization may imply a very fast ascent (a few months). Compatible with the contemporary presence of primordial HIMU–MORB and crust-contaminated end-members are the data on noble gases from FI that highlighted an 3He/4He value of 6.5–6.6Ra. The hypothesis of two different types of magmas, identified by the trace element geochemistry in MIs, is, thus, reinforced by helium isotopic data on FI of the 2018 eruption together with data from other Etnean eruptions and allows the inference of a bicomponent magma mixing.125 49 - PublicationOpen AccessIl Monitoraggio dei Vulcani Campani - Secondo semestre 2019(2021-09)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Esposito, Roberta; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel secondo semestre 2019.556 283 - PublicationOpen AccessIl Monitoraggio dei Vulcani Campani - Primo semestre 2019(2021-02)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel primo semestre 2019.592 305 - PublicationRestrictedMeso- to nano-scale evidence of fluid-assisted co-seismic slip along the normal Mt. Morrone Fault, Italy: Implications for earthquake hydrogeochemical precursors(2021)
; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;; ; ; ; ;Fluids play an important role in seismic faulting both at hypocentral depths during earthquake nucleation and at shallower crustal levels during rupture propagation. Pre- to co-seismic anomalies of crustal fluid circulation have been identified by hydrogeochemical and seismological monitoring and interpreted as potential precursors of strong earthquakes. To shed light on the role of fluids in seismic and precursory mechanisms, the active carbonate-hosted principal slip zone (7-8 cm thick) of the exhumed (exhumation < 3 km) normal Mt. Morrone Fault (central Apennines) has been investigated with a multi-disciplinary approach from the macro- to the nano-scale. The distal slip zone consists of white cementitious calcite-rich bands and red cataclastic bands composed of dolomite and calcite clasts embedded in a clay-rich matrix. The proximal slip zone consists of subparallel ultracataclastic layers separated by sharp slip surfaces. The ultracataclastic layers mutually inject/overprint, bearing evidence of granular fluidization, dolomite thermal decomposition, and clay amorphization. Fluid inclusions and the distribution of both trace and major elements reveal the inflow of both shallow and deep external fluids into the slip zone. Presumably, the deep fluids originated from a magmatic-like source and ascended along the fault during pre-seismic dilation and seismic ruptures, interacting with shallow phyllosilicate-rich flysch deposits and the fluids hosted within them. In this context, vanadium-rich fluidized microlayers along the exhumed Mt. Morrone Fault are reminiscent of vanadium-rich potential hydrogeochemical precursors arose in the shallow aquifers of the study area since a few months before the 2016 Mw 6.0 Amatrice earthquake.240 17 - PublicationOpen AccessAn Overview of the Geochemical Characteristics of Oceanic Carbonatites: New Insights from Fuerteventura Carbonatites (Canary Islands)(2021)
; ; ; ; ; ; ; ; ; The occurrence of carbonatites in oceanic settings is very rare if compared with their continental counterpart, having been reported only in Cape Verde and Canary Islands. This paper provides an overview of the main geochemical characteristics of oceanic carbonatites, around which many debates still exist regarding their petrogenesis. We present new data on trace elements in minerals and whole-rock, together with the first noble gases isotopic study (He, Ne, Ar) in apatite, calcite, and clinopyroxene from Fuerteventura carbonatites (Canary Islands). Trace elements show a similar trend as Cape Verde carbonatites, almost tracing the same patterns on multi-element and REE abundance diagrams. 3He/4He isotopic ratios of Fuerteventura carbonatites reflect a shallow (sub-continental lithospheric mantle, SCLM) He signature in their petrogenesis, and they clearly differ from Cape Verde carbonatites, i.e., fluids from a deep and low degassed mantle with a primitive plume-derived He signature are involved in their petrogenesis.267 30 - PublicationOpen AccessObsidians of Pantelleria (Strait of Sicily): A Petrographic, Geochemical and Magnetic Study of Known and New Geological Sources(2020-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; This paper provides new petrochemical and paleomagnetic data from obsidian sub-sources on the island of Pantelleria, exploited since the Neolithic. Data has been obtained from 14 obsidian samples from 4 locations: Fossa della Pernice (2 sites), Salto la Vecchia and Balata dei Turchi. Here, we aim to better characterize these obsidians using a cross-disciplinary and multi-analytical approach, to further understand their archaeological significance. Major element analyses (EMP) have enabled two compositional super-groups to be distinguished: (i) Fossa della Pernice, less peralkaline and (ii) Balata dei Turchi–Salto la Vecchia, distinctly more peralkaline and having almost identical chemical patterns. Trace element analyses (LA-ICP-MS) corroborate major element groupings, with the Balata dei Turchi–Salto la Vecchia super-group being further characterized by a pronounced negative europium anomaly. Glass H2O contents (FT-IR) reveal an overlap among all the sub-sources (H2O = 0.1–0.3 wt. %). Magnetic methods have refined the petrochemical groupings, permitting further distinction between Balata dei Turchi–Salto La Vecchia and the Fossa della Pernice super-groups. The occurrence of sub-microscopic (< 1 μm) ferromagnetic minerals results in different magnetic susceptibility and Natural Remanent Magnetization values and allows the best distinction among the products from the chosen sites. When compared with obsidian tools excavated from Bronze-age settlements on the island of Ustica (230 km NE of Pantelleria), 12% are distinctly peralkaline, indicating their provenance to be from the Balata dei Turchi sub-source.898 85 - PublicationRestrictedThe nature of the West Antarctic Rift System as revealed by noble gases in mantle minerals(2019-06-18)
; ; ; ; ; ; ; ; ;; ;; ;The noble gases He, Ne and Ar in fluid inclusions from mantle xenoliths at three localities in Northern Victoria Land (Baker Rocks, Greene Point and Handler Ridge), spanning about 300 km, provide new constraints on the nature of the lithospheric mantle beneath the West Antarctic Rift System (WARS). Mantle xenoliths are anhydrous and hydrous spinel-bearing lherzolite and harzburgite samples. The 4He/40Ar* ratios (0.004–0.39) in olivines, two pyroxenes and amphiboles are much lower than those typical of fertile mantle (1–5), suggesting that this lithospheric domain are consistent with a variably depleted mantle, as also indicated by the major- and trace-element compositions of whole rock and minerals. The 3He/4He ratios vary from 2.30 to 19.79 Ra. However, the lowest and highest 3He/4He ratios are related to the post-eruptive accumulation of radiogenic 4He and cosmogenic 3He, respectively. After filtering the data for these secondary effects, we constrain the 3He/4He signature of the subcontinental lithospheric mantle below this area to 7.1 ± 0.4 Ra (mean ± standard deviation). This isotope signature results from mantle metasomatism by asthenospheric melts with a MORB (midocean ridge basalt)-type 3He/4He. The range of 7.1 ± 0.4 Ra is compatible with previous measurements in mantle xenoliths and lavas from other localities of the NVL, as far away as Mount Erebus, evidencing a homogeneous He-isotope signature beneath the entire rift. The He and Ne isotopes support the hypothesis that WARS origin is not related to a plume.741 10 - PublicationRestrictedPyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis(2019-06)
; ; ; ; ; ; ; ; ; Pyrite and organic matter closely coexist in some hydrothermally-altered gabbroic xenoliths from the Hyblean Plateau, Sicily. The representative sample consists of plagioclase, Fe-oxides, clinopyroxene, pyrite and minor amounts of many other minerals. Plagioclase displays incipient albitization, clinopyroxene is deeply corroded. Pyrite grains are widely replaced by spongy-textured magnetite, which locally hosts Ca-(and Fe-)sulfate micrograins and blebs of condensed organic matter. Whole-rock trace element distribution evidences that incompatible elements, particularly the fluid-mobile Ba, U and Pb, are significantly enriched with respect to N-MORB values. The mineralogical and geochemical characteristics of the sample, and its U-Pb zircon age of 216.9 ± 6.7 MA, conform to the xenolith-based viewpoint that the unexposed Hyblean basement is a relict of the Ionian Tethys lithospheric domain, mostly consisting of abyssal-type serpentinized peridotites with small gabbroic intrusions. Circulating hydrothermal fluids there favored the formation of hydrocarbons trough Fischer-Tropsch-type organic synthesis, giving also rise to sulfidization episodes. Subsequent variations in temperature and redox conditions of the system induced partial de-sulfidization, Fe-oxides precipitation and sulfate-forming reactions, also promoting poly-condensation and aromatization of the already-formed hydrocarbons. Here we show organic matter adhering to a crystal face of a microscopic pyrite grain. Pyrite surfaces, as abiotic analogues of enzymes, can adsorb and concentrate organic molecules, also acting as catalysts for a broad range of proto-biochemical reactions. The present data therefore may support established abiogenesis models suggesting that pyrite surfaces carried out primitive metabolic cycles in suitable environments of the early Earth, such as endolithic recesses in mafic rocks permeated by hydrothermal fluids.182 2 - PublicationOpen AccessA Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily)(2019-03-29)
; ; ; ; ; Ultramafic magmas (MgO 18 wt%) are generally thought to be primary mantle melts formed at temperatures in excess of 1600 C. Volatile contents are expected to be low, and accordingly, high-Mg magmas generally do not yield large explosive eruptions. However, there are important exceptions to low explosivity that require an explanation. Here we show that hydrous (hence, potentially explosive) ultramafic magmas can also form at crustal depths at temperatures even lower than 1000 C. Such a conclusion arose from the study of a silicate glass vein, ~1 mm in thickness, cross-cutting a mantle-derived harzburgite xenolith from the Valle Guffari nephelinite diatreme (Hyblean area, Sicily). The glass vein postdates a number of serpentine veins already existing in the host harzburgite, thus reasonably excluding that the melt infiltrated in the rock at mantle depths. The glass is highly porous at the sub-micron scale, it also bears vesicles filled by secondary minerals. The distribution of some major elements corresponds to a meimechite composition (MgO = 20.35 wt%; Na2O + K2O < 1 wt%; and TiO2 > 1 wt%). On the other hand, trace element distribution in the vein glass nearly matches the nephelinite juvenile clasts in the xenolith-bearing tuff-breccia. These data strongly support the hypothesis that an upwelling nephelinite melt (MgO = 7–9 wt%; 1100 T 1250 C) intersected fractured serpentinites (T 500 C) buried in the aged oceanic crust. The consequent dehydroxilization of the serpentine minerals gave rise to a supercritical aqueous fluid, bearing finely dispersed, hydrated cationic complexes such as [Mg2+(H2O)n]. The high-Mg, hydrothermal solution "flushed" into the nephelinite magma producing an ultramafic, hydrous (hence, potentially explosive), hybrid magma. This hypothesis explains the volcanological paradox of large explosive eruptions produced by ultramafic magmas.360 28 - PublicationOpen AccessThe neolithic obsidian artifacts from Roccapalumba (Palermo, Italy): first characterization and provenance determination(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; This paper discusses the first geochemical characterization of obsidian fragments from the prehistoric site of Roccapalumba (Palermo, Italy). The Neolithic age of the prehistoric settlement was constrained by pottery and flint tools discovered in the same archaeological context. To define the provenance of the investigated obsidian artifacts major and trace element analyses have been carried out by using scanning electron microscopy (SEM–EDX) and inductively coupled plasma mass spectrometry (LA–ICP–MS). The comparison with literature data of the Central Mediterranean source areas, based on trace elements content and their ratios allow of constraining a provenance of the Roccapalumba obsidians from the Lipari Island. The obsidian lava flow from Gabellotto Valley is the most probable source of volcanic glass at Lipari and also the most exploited in the Mediterranean area for manufactured tools. The obtained results can contribute in reconstructing the trade/exchange and procurement relationships occurred between the prehistoric human groups inhabiting Sicily during Neolithic age.298 136