Options
Tozzi, Roberta
Loading...
Preferred name
Tozzi, Roberta
Email
roberta.tozzi@ingv.it
Staff
staff
ORCID
Scopus Author ID
36897454600
93 results
Now showing 1 - 10 of 93
- PublicationOpen AccessPerpendicular Electrical Conductivity in the Topside Ionosphere Derived from Swarm Measurements(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ;; The study of the physical properties of the topside ionosphere is fundamental to investigating the energy balance of the ionosphere and developing accurate models to predict relevant phenomena, which are often at the root of Space Weather effects in the near-Earth environment. One of the most important physical parameters characterising the ionospheric medium is electrical conductivity, which is crucial for the onset and amplification of ionospheric currents and for calculating the power density dissipated by such currents. We characterise, for the first time, electrical conductivity in the direction perpendicular to the geomagnetic field, namely Pedersen and Hall conductivities, in the topside ionosphere at an altitude of about 450 km. For this purpose, we use eight years of in situ simultaneous measurements of electron density, electron temperature and geomagnetic field strength acquired by the Swarm A satellite. We present global statistical maps of perpendicular electrical conductivity and study their variations depending on magnetic latitude and local time, seasons, and solar activity. Our findings indicate that the most prominent features of perpendicular electrical conductivity are located at low latitudes and are probably driven by the complex dynamics of the Equatorial Ionisation Anomaly. At higher latitudes, perpendicular conductivity is a few orders of magnitude lower than that at low latitudes. Nevertheless, conductivity features are modulated by solar activity and seasonal variations at all latitudes.24 3 - PublicationOpen AccessInvestigating Equatorial Plasma Depletions through CSES-01 Satellite Data(2024)
; ; ; ; ; ; ; ; ; ;; ; ; ; ; Ionospheric plasma density irregularities, which are one of the primary sources of disturbance for the Global Navigation Satellite System, significantly impact the propagation of electromagnetic signals, leading to signal degradation and potential interruptions. In the equatorial ionospheric F region after sunset, certain plasma density irregularities, identified as equatorial plasma bubbles, encounter optimal conditions for their formation and development. The energy spectra of electron density fluctuations associated with these irregularities exhibit a power-law scaling behavior qualitatively similar to the Kolmogorov power law observed in fluid turbulence theory. This intriguing similarity raises the possibility that these plasma density irregularities may possess turbulent characteristics. In this study, we analyzed electron density, temperature, and pressure data obtained from the China Seismo-Electromagnetic Satellite (CSES-01) to delve into the spectral properties of equatorial plasma depletions in the ionospheric F region at an altitude of about 500 km. This research marks the first exploration of these properties utilizing CSES-01 data and focuses on 14 semi-orbits that crossed the equator after midnight (01:00–03:00 LT), characterized by a geomagnetic quiet condition (Kp < 1). The analysis of electron temperature, density and pressure within equatorial plasma depletions revealed power-law scaling behavior for all the selected parameters. Notably, the spectral index values of these parameters are different from each other. The significance of these findings in terms of investigating plasma depletions via magnetic field signatures, as well as their relationship to the occurrence of Rayleigh–Taylor convective turbulence, is examined and discussed.4 3 - PublicationOpen AccessThe effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication(2024)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; On 8 May 2024, the solar active region AR13664 started releasing a series of intense solar flares. Those of class X released between 9 and 11 May 2024 gave rise to a chain of fast Coronal Mass Ejections (CMEs) that proved to be geoeffective. The Storm Sudden Commencement (SSC) of the resulting geomagnetic storm was registered on 10 May 2024 and it is, to date, the strongest event since November 2003. The May 2024 storm, named hereafter Mother’s Day storm, peaked with a Dst of –412 nT and stands out as a “standard candle” storm affecting modern era technologies prone to Space Weather threats. Moreover, the recovery phase exhibited almost no substorm signatures, making the Mother’s Day storm as a perfect storm example. Despite the plethora of notable near Earth environment modifications that are still under investigation, in this paper we concentrate on the Space Weather effects over the Mediterranean sector, with a focus on Italy. In fact, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) manages a dense network of GNSS receivers (including scintillation receivers), ionosondes and magnetometers in the Mediterranean area, which facilitated for a detailed characterization of the modifications induced by the storm. Concerning the geomagnetic field, observatories located in Italy recorded a SSC with a rise time of only 3 minutes and a maximum variation of around 600 nT. The most notable ionospheric effect following the arrival of the disturbance was a significant decrease in plasma density on 11 May, resulting in a pronounced negative ionospheric storm registered on both the critical F2-layer frequency (foF2) and the Total Electron Content (TEC). Another negative effect was recorded on 13 May, while no signatures of composition changes and, specifically, to a decrease of the [O]/[N ] ratio. The IRI UP IONORING 2 data-assimilation procedure, recently developed to nowcast foF2 over Italy, proved to be quite reliable during this extreme event, being characterised just by an overestimation during the main phase of the storm, when the electron density and the height of the F region decreased and increased, respectively. Relevant outcomes of the work relate to the Rate Of TEC change Index (ROTI), which shows unusually high spatially distributed values on the nights of 10 and 11 May. The ROTI enhancements on 10 May might be linked to Stable Auroral Red (SAR) arcs and an equatorward displacement of the main ionospheric trough. Instead, the ROTI enhancements on 11 May might be triggered by a joint action of low-latitude plasma pushed poleward by the pre-reversal enhancement (PRE) in the post-sunset hours and wave-like perturbations propagating from the North. Furthermore, the storm generated immediate attention of the general public to Space Weather effects, including mid-latitude visible phenomena like SAR arcs. This paper outlines the report of the Space Weather Monitoring Group (SWMG) of the INGV Environment Department and its effort to disseminate information about this exceptional event.104 69 - PublicationOpen AccessPolar Cap Patches Scaling Properties: Insights from Swarm Data(2023-09-01)
; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; Among the effects of space weather, the degradation of air traffic communications and satellite-based navigation systems are the most notable. For this reason, it is of uttermost importance to understand the nature and origin of ionospheric irregularities that are at the base of the observed communication outages. Here we focus on polar cap patches (PCPs) that constitute a special class of ionospheric irregularities observed at very high latitudes in the F region. To this purpose we use the so-called PCP flag, a Swarm Level 2 product, that allows for identifying PCPs. We relate the presence of PCPs to the values of the first- and second-order scaling exponents and intermittency estimated from Swarm A electron density fluctuations and to the values of the Rate Of change of electron Density Index (RODI) for two different levels of geomagnetic activity, over a time span of approximately 3.5 years starting on 16 July 2014. Our findings show that values of RODI, first- and second-order scaling exponents and intermittency corresponding to measurements taken inside PCPs differ from those corresponding to measurements taken outside PCPs. Additionally, the values of the first- and second-order scaling exponents and of intermittency indicate that PCPs are in a turbulent state. Investigation of the coincidence of loss of lock (LoL) events with PCPs displayed that approximately 57.4% of LoLs in the Northern hemisphere and 45.7% in the Southern hemisphere occur in coincidence of PCPs when disturbed geomagnetic activity is considered. During quiet geomagnetic conditions these percentages decrease to 51.4% in the Northern hemisphere and to 20.1% in the Southern hemisphere.216 37 - PublicationOpen AccessGEOQUEST TROPOMAG DIGITAL ADVENTURE PATH: WHEN SCIENCE IS A GAME(inScience Press, Rua Tomas Ribeiro, 45, 1º D, 1050-225 Lisboa, Portugal, 2023-06-24)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Game is a powerful educational tool able to involve students and keep their attention high, promoting cognitive development, discoveries, reasoning, and thinking. It is also an effective active form of learning which consolidates the acquired knowledge and carries out an authentic assessment through reality tasks and immediate feedback typical of the use of the digital games. Our gamy-learning experimentation focuses on new methods and practices of science communication, with the aim to face the challenge of educating about natural risks and climate change. The goal is to facilitate the automatic choice of good practices, by stimulating mind, intuition and logic in the perspective of teambuilding in school-based civic education. The proper application of technological tools is a valuable aid for conscious communication for the next generation. A Computer Supported Collaborative Learning Education is experienced, in order to test the efficacy of our GeoQuest TROPOMAG digital adventure, and pave the ground for the implementation of the storytelling in an integrated table game. Our climate change role-playing videogame explores phenomena related to the possible effects of changes in the Earth's magnetic field on the atmosphere. The virtual adventure path is played on smartphones and follows alternative paths chosen by the players to develop the storytelling. As a result, students play not only “just for fun”, but also to actively participate in their learning process and acquisition of new knowledge, skills and competences in environmental issues.61 16 - PublicationOpen AccessModeling the Topside Ionosphere Effective Scale Height through In Situ Electron Density Observations by Low-Earth-Orbit Satellites(2023-06-09)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; In this work, we aim to characterize the effective scale height at the ionosphere F2-layer peak (H0) by using in situ electron density (Ne) observations by Langmuir Probes (LPs) onboard the China Seismo-Electromagnetic Satellite (CSES—01). CSES—01 is a sun-synchronous satellite orbiting at an altitude of ~500 km, with descending and ascending nodes at ~14:00 local time (LT) and ~02:00 LT, respectively. Calibrated CSES—01 LPs Ne observations for the years 2019–2021 provide information in the topside ionosphere, whereas the International Reference Ionosphere model (IRI) provides Ne values at the F2-layer peak altitude for the same time and geographical coordinates as CSES—01. CSES—01 and IRI Ne datasets are used as anchor points to infer H0 by assuming a linear scale height in the topside representation given by the NeQuick model. COSMIC/FORMOSAT—3 (COSMIC—1) radio occultation (RO) data are used to constrain the vertical gradient of the effective scale height in the topside ionosphere in the linear approximation. With the CSES—01 dataset, we studied the global behavior of H0 for daytime (~14:00 LT) and nighttime (~02:00 LT) conditions, different seasons, and low solar activity. Results from CSES—01 observations are compared with those obtained through Swarm B satellite Ne-calibrated measurements and validated against those from COSMIC—1 RO for similar diurnal, seasonal, and solar activity conditions. H0 values modeled by using CSES—01 and Swarm B-calibrated observations during daytime both agree with corresponding values obtained directly from COSMIC—1 RO profiles. Differently, H0 modeling for nighttime conditions deserves further investigation because values obtained from both CSES—01 and Swarm B-calibrated observations show remarkable and spatially localized differences compared to those obtained through COSMIC—1. Most of the H0 mismodeling for nighttime conditions can probably to be attributed to a sub-optimal spatial representation of the F2-layer peak density made by the underlying IRI model. For comparison, H0 values obtained with non-calibrated CSES—01 and Swarm B Ne observations are also calculated and discussed. The methodology developed in this study for the topside effective scale height modeling turns out to be applicable not only to CSES—01 satellite data but to any in situ Ne observation by low-Earth-orbit satellites orbiting in the topside ionosphere.370 34 - PublicationOpen AccessThe CAESAR Project for the ASI Space Weather Infrastructure(2023-01-06)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ; ; ; ; ;; ;; ;; ; ; ;; ; ; ; ; ; ; ; ; ; ;This paper presents the project Comprehensive spAce wEather Studies for the ASPIS prototype Realization (CAESAR), which aims to tackle the relevant aspects of Space Weather (SWE) science and develop a prototype of the scientific data centre for Space Weather of the Italian Space Agency (ASI) called ASPIS (ASI SPace Weather InfraStructure). To this end, CAESAR involves the majority of the SWE Italian community, bringing together 10 Italian institutions as partners, and a total of 92 researchers. The CAESAR approach encompasses the whole chain of phenomena from the Sun to Earth up to planetary environments in a multidisciplinary, comprehensive, and unprecedented way. Detailed and integrated studies are being performed on a number of well-observed “target SWE events”, which exhibit noticeable SWE characteristics from several SWE perspectives. CAESAR investigations synergistically exploit a great variety of different products (datasets, codes, models), both long-standing and novel, that will be made available in the ASPIS prototype: this will consist of a relational database (DB), an interface, and a wiki-like documentation structure. The DB will be accessed through both a Web graphical interface and the ASPIS.py module, i.e., a library of functions in Python, which will be available for download and installation. The ASPIS prototype will unify multiple SWE resources through a flexible and adaptable architecture, and will integrate currently available international SWE assets to foster scientific studies and advance forecasting capabilities.566 41 - PublicationOpen AccessMultiscale Features of Magnetic Field Fluctuations and Field-Aligned Currents in the Polar Ionosphere: A Case Study(2022-11-22)
; ; ; ; ; ; ; ;; ;; ; ; Complexity is a typical feature of space plasmas that may involve the formation of multiscale coherent magnetic and plasma structures. The winding features (pseudo-polarization) of magnetic field fluctuations at different spatial scales are a useful quantity in this framework for investigating complexity in space plasma. Indeed, a strong link between pseudo-polarization, magnetic/plasma structures, turbulence and dissipation exists. We present some preliminary results on the link between the polarization of the magnetic field fluctuations and the structure of field-aligned currents in the high-latitude ionosphere. This study is based on high-resolution (50 Hz) magnetic field data collected on board the European Space Agency Swarm constellation. The results show the existence of a clear link between the multiscale coarse-grained structure of pseudo-polarization and intensity of the field-aligned currents, supporting the recent findings according to which turbulence may be capable of generating multiscale filamentary current structures in the auroral ionosphere. This feature is also examined theoretically, along with its significance for the rate of energy deposition and heating in the polar regions.556 15 - PublicationOpen AccessParallel Electrical Conductivity at Low and Middle Latitudes in the Topside Ionosphere Derived from CSES-01 Measurements(2022-10-11)
; ; ; ; ; ; ; ; ; ; ; ; ; The study of electrical currents in the topside ionosphere is of great importance, as it may al- low a better understanding of the processes involved in the Sun–Earth interaction and magnetosphere– ionosphere–thermosphere coupling, two crucial aspects debated by the Space Weather scientific community. In this context, investigating the electrical conductivity parallel to the geomagnetic field in the topside ionosphere is of primary importance because: (1) it provides information on the capability of the ionosphere to conduct currents; (2) it relates current density and electric field through Ohm’s law; (3) it can help to quantify the dissipation of currents; (4) it is generally modeled and not locally measured by in situ missions. In this work, we used in situ measurements of electron density and temperature recorded between 2019 and 2021 by the China Seismo-Electromagnetic Satellite (CSES-01) flying with an orbital inclination of 97.4◦ and at an altitude of about 500 km to compute the parallel electrical conductivity in the topside ionosphere at low and middle latitudes at the two fixed local times (LT) characterizing the CSES-01 mission: around 02 and 14 LT. The results, which are discussed in light of previous literature, highlight the dependence of conductivity on latitude and longitude and are compared with those obtained using values both measured by the Swarm B satellite (flying at a similar altitude) and modeled by the International Reference Ionosphere in the same time period. In particular, we found a diurnal variation in parallel electrical conductivity, with a slight hemispheric asymmetry. Daytime features are compatible with Sq and equatorial electrojet current systems, containing “anomalous” low values of conductivity in correspondence with the South Atlantic region that could be physical in nature.591 5 - PublicationOpen AccessInter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission(2022-09-19)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The China Seismo-Electromagnetic Satellite (CSES-01) provides in situ electron density (Ne) observations through Langmuir probes (LPs) in the topside ionosphere since February 2018. CSES-01 is a sun-synchronous satellite probing the ionosphere around two fixed local times (LTs), 14 LT in the daytime sector and 02 LT in the night-time sector, at an altitude of about 500 km. Previous studies evidenced that CSES-01 seems to underestimate Ne measurements with respect to those acquired by similar satellites or obtained from different instruments. To overcome this issue, we calibrated CSES-01 LP Ne observations through Swarm B satellite data, which flies approximately at CSES-01 altitude. As a first step, Swarm B LP Ne observations were calibrated through Faceplate (FP) Ne observations from the same satellite. Such calibration allowed solving the Ne overestimation made by Swarm LP during nighttime for low solar activity. Then, the calibrated Swarm B LP Ne observations were used to calibrate CSES-01 Ne observations on a statistical basis. Finally, the goodness of the proposed calibration procedure was statistically assessed through a comparison with Ne observations by incoherent scatter radars (ISRs) located at Jicamarca, Arecibo, and Millstone Hill. The proposed calibration procedure allowed solving the CSES-01 Ne underestimation issue for both daytime and nighttime sectors and brought CSES-01 Ne observations in agreement with corresponding ones measured by Swarm B, ISRs, and with those modelled by the International Reference Ionosphere (IRI). This is a first fundamental step towards a possible future inclusion of CSES-01 Ne observations in the dataset underlying IRI for the purpose of improving the description of the topside ionosphere made by IRI.622 20