Options
Picozza, P.
Loading...
3 results
Now showing 1 - 3 of 3
- PublicationOpen AccessCan an impulsive variation of the solar wind plasma pressure trigger a plasma bubble? A case study based on CSES, Swarm and THEMIS data(2021-01-01)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; During the August 25, 2018 geomagnetic storm, the new borne CSES-01 satellite and the Swarm A satellite detected a really large equatorial plasma bubble (EPB) in the post-midnight sector over western Africa. We investigated the features of this deep ionospheric plasma depletion using data from the Langmuir probes on-board CSES-01 and Swarm A satellites, and data from the high-precision magnetometer and the electric field detector instruments on-board CSES-01. Using also plasma and magnetic field data from THEMIS-E satellite we found that, during the passage of the magnetic cloud that drove the geomagnetic storm, an impulsive variation lasting about ten minutes characterized the solar wind (SW) pressure. The analysis of the delay time, between the occurrence of such impulsive variation and the detection of the plasma bubble, suggests a possible link between the SW pressure impulsive variation as identified by THEMIS-E and the generation of the EPB as detected by CSES-01 and Swarm A. We put forward the hypothesis that the SW pressure impulsive variation might have triggered an eastward prompt penetrating electric field that propagated from high to equatorial latitudes, overlapping in the nightside region to the zonal westward electric field, causing either a reduction or an inversion, at the base of the EPB triggering.469 113 - PublicationRestrictedThe HEPD particle detector and the EFD electric field detector for the CSES satellite(2017)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ;The CSES satellite, developed by Chinese (CNSA) and Italian (ASI) space Agencies, will investigate iono-magnetospheric disturbances (induced by seismicity and electromagnetic emissions of tropospheric and anthropogenic origin); will monitor the temporal stability of the inner Van Allen radiation belts and will study the solar-terrestrial coupling by measuring fluxes of cosmic rays and solar energetic particles. In particular the mission aims at confirming the existences (claimed from several analyses) of a temporal correlations between the occurrence of earthquakes and the observation in space of electromagnetic disturbances, plasma fluctiations and anomalous fluxes of high-energy particles precipitating from the inner Van Allen belt. CSES will be launched in the summer of 2017 with a multi-instruments payload able to measure: e.m. fields, charged particles, plasma, TEC, etc. The Italian LIMADOU collaboration will provide the High-Energy Particle Detector (HEPD), designed for detecting electrons (3–200 MeV) and proton (30–300 MeV)), and participates to develop the Electric Field Detector (EFD) conceived for measuring electric field from ∼DC up to 5 MHz.607 13 - PublicationOpen AccessGeospace perturbations induced by the Earth: The state of the art and future trends(2015)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;A systematic multi-parameter and multi-platform approach to study the slow process of earthquake preparation is fundamental to gain some insights on this complex phenomenon. In particular, an important contribution is the integrated analysis between ground geophysical data and satellite data. In this paper we review some of the more recent results and suggest the next directions of this kind of research. Our intention is not to detect a particular precursor but to understand the physics underlying the various observations and to establish a reliable physical model of the preparation phase before an impending earthquake. In this way, future investigation will search for suitable fore-patterns, which the physical model of multi-layers coupling predicts and characterizes by quasi-synchronism in time and geo-consistency in space. We also present alternative explanations for some anomalies which are not actually related to earthquakes, rather to other natural or anthropic processes.367 60