Options
Vittori, Eutizio
Loading...
13 results
Now showing 1 - 10 of 13
- PublicationOpen AccessSpatial migration of temporal earthquake clusters driven by the transfer of differential stress between neighbouring fault/shear-zone structures(2024-04)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Uncertainty concerning the processes responsible for slip-rate fluctuations associated with temporal clustering of surface faulting earthquakes is a fundamental, unresolved issue in tectonics, because strain-rates accommodated by fault/shear-zone structures are the key to understanding the viscosity structure of the crust and seismic hazard. We constrain the timing and amplitude of slip-rate fluctuations that occurred on three active normal faults in central Italy over a time period of 20–30 kyrs, using in situ 36Cl cosmogenic dating of fault planes. We identify five periods of rapid slip on individual faults lasting a few millennia, separated time periods of up to 10 millennia with low or zero slip-rate. The rapid slip pulses migrated across the strike between the faults in two waves from SW to NE. We replicate this migration with a model where rapid slip induces changes in differential stress that drive changes in strain-rate on viscous shear zones that drive slip-rate variability on overlying brittle faults. Earthquakes increase the differential stress and strain-rate on underlying shear zones, which in turn accumulate strain, re-loading stress onto the overlying brittle fault. This positive feedback produces high strain-rate episodes containing several large magnitude surface faulting earthquakes (earthquake clusters), but also reduce the differential stress on the viscous portions of neighbouring fault/shear-zones slowing the occurrence of large-magnitude surface faulting earthquakes (earthquake anticlusters). Shear-zones on faults experiencing anticlusters continue to accumulate viscous strain at a lowered rate, and eventually this loads the overlying brittle fault to failure, initiating a period of rapid slip through the positive feedback process described above, and inducing lowered strain-rates onto neighbouring fault/shear-zones. We show that these patterns of differential stress change can replicate the measured earthquake clustering implied by the 36Cl data. The stress changes are related to the fault geometry in terms of distance and azimuth from the slipping structure, implying that (a) strain-rate and viscosity fluctuations for studies of continental rheology, and (b) slip-rates for seismic hazard purposes are to an extent predictable given knowledge of the fault system geometry.63 11 - PublicationOpen AccessFault rupture and aseismic creep accompanying the December 26, 2018, Mw 4.9 Fleri earthquake (Mt. Etna, Italy): Factors affecting the surface faulting in a volcano-tectonic environment(2023)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; On December 26, 2018 (2:19 UTC), during a volcanic eruption on the Mt. Etna eastern flank (Sicily, southern Italy), the largest instrumental earthquake ever recorded in the volcano ruptured the Fiandaca Fault, with epicenter between Fleri and Pennisi villages (hypocenter at ca. 300 m a. s. l., Mw 4.9). This was the mainshock of an earthquake swarm and it was accompanied by widespread surface faulting and extensive damage along a narrow belt near the fault trace. Few hours after the mainshock, an episodic aseismic creep event occurred along the Aci Platani Fault, a SE extension of the Fiandaca Fault, which caused several damages in the Aci Platani village. We surveyed and mapped the coseismic and aseismic ground ruptures, and collected structural data on their geometry, displacement, and fault zone fabric. We compared the mapped surface ruptures with topography, lithology, and morphology of the buried top of the sedimentary basement. We conclude that the geometry of the volcanic pile influenced the surface expression of faulting during the December 26, 2018 event. The top surface of the marly clay basement should be considered as a detachment surface for shallow sliding blocks. The earthquake occurred on top of a depression of the sedimentary basement forcing the sliding eastward, causing at surface the re-arrangement of the fault strand pattern and deformation style, switching from shear faulting to a tensile failure. The Fleri earthquake therefore provides an unprecedented dataset for 1) understanding active faulting in the European largest onshore volcano, 2) modeling its complex dynamics, and 3) contributing to a more refined surface faulting hazard assessment at Mt. Etna. Results from this investigation might be useful for characterizing capable faulting in similar volcano-tectonic settings worldwide.34 43 - PublicationOpen AccessSurface faulting earthquake clustering controlled by fault and shear-zone interactions(2022-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using 36Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters. Our calculations link stress transfer caused by slip averaged over clusters and anti-clusters on coupled fault/shear-zone structures to viscous flow laws. We show that (1) differential stress fluctuates during fault/shear-zone interactions, and (2) these fluctuations are of sufficient magnitude to produce changes in strain-rate on viscous shear zones that explain slip-rate changes on their overlying brittle faults. These results suggest that fault/shear-zone interactions are a plausible explanation for clustering, opening the path towards process-led seismic hazard assessments.90 13 - PublicationOpen AccessTesting Tsunami Inundation Maps for Evacuation Planning in Italy(2021-03-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Inundation maps are a fundamental tool for coastal risk management and in particular for designing evacuation maps and evacuation planning. These in turn are a necessary component of the tsunami warning systems’ last-mile. In Italy inundation maps are informed by a probabilistic tsunami hazard model. Based on a given level of acceptable risk, Italian authorities in charge for this task recommended to consider, as design hazard intensity, the average return period of 2500 years and the 84th percentile of the hazard model uncertainty. An available, regional-scale tsunami hazard model was used that covers the entire Italian coastline. Safety factors based on analysis of run-up variability and an empirical coastal dissipation law on a digital terrain model (DTM) were applied to convert the regional hazard into the design run-up and the corresponding evacuation maps with a GIS-based approach. Since the regional hazard cannot fully capture the local-scale variability, this simplified and conservative approach is considered a viable and feasible practice to inform local coastal risk management in the absence of high-resolution hazard models. The present work is a first attempt to quantify the uncertainty stemming from such procedure. We compare the GIS-based inundation maps informed by a regional model with those obtained from a local high-resolution hazard model. Two locations on the coast of eastern Sicily were considered, and the local hazard was addressed with the same seismic model as the regional one, but using a higher-resolution DTM and massive numerical inundation calculations with the GPU-based Tsunami-HySEA nonlinear shallow water code. This study shows that the GIS-based inundation maps used for planning deal conservatively with potential hazard underestimation at the local scale, stemming from typically unmodeled uncertainties in the numerical source and tsunami evolution models. The GIS-based maps used for planning fall within the estimated “error-bar” due to such uncertainties. The analysis also demonstrates the need to develop local assessments to serve very specific risk mitigation actions to reduce the uncertainty. More in general, the presented case-studies highlight the importance to explore ways of dealing with uncertainty hidden within the high-resolution numerical inundation models, e.g., related to the crude parameterization of the bottom friction, or the inaccuracy of the DTM.903 33 - PublicationOpen AccessEARTHQUAKE RUPTURE ON THE FIANDACA FAULT, DEC. 26, 2018, MW 4.9: FAULT FABRIC ANALYSIS, INTENSITY VS. SURFACE FAULTING, AND HISTORICAL SEISMICITY AT MT. ETNA VOLCANO, ITALY(2019-11)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; On December 26, 2018, a Mw 4.9 earthquake hits the eastern flank of Mount Etna volcano (Sicily). The epicenter is located between the Fleri and Pennisi villages, and focal depth is estimated at 0.3 km (http://cnt.rm.ingv.it/event/21285011). This earthquake is part of a seismic sequence begun on December 23, 2018 and a concurrent phase of volcanic eruption, eventually resulting in lava flows and a dyke intrusion (De Novellis et al., 2019).The earthquake is the result of the activation of the Fiandaca Fault; it is accompanied by widespread surface faulting and secondary environmental effects (Emergeo Working Group, 2019; Figs. 1 - 3), and have a maximum intensity of VIII EMS (Quest WG, 2019).Partial or complete ruptures of the Fiandaca Fault are well-documented in the last 150 years (Fig. 1). The last event that activated the entire structure, as happened in 2018, occurred in 1894 and generated extensive surface faulting and secondary effects (Riccò, 1894; Baratta, 1894; Imbò, 1935).Despite the abundant documentation of previous events, the Fleri earthquake represents the first opportunity to document coseismic effects of a strong, shallow seismic event at Mt. Etna through modern field techniques, sustained by accurate remote-sensed data, including unprecedented InSar measurements.107 54 - PublicationOpen AccessSurface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ; ; ; ; ;; ; ; ;; ; ; ;; ; ; ; ; ;; ; ;; ; ; ; ; ;; ; ;; ; ; ; ; ;; ; ;; ;; ; ;; ; ;; ; ; ;; ; ;; ; ; ; ; ; ;; ; ;; ; ; ;; ; ; ;; ; ; ; ; ;; ; ; ;; ; ; ; ; ;; ; ;; ;; ;; ; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ;; ; ;We present a 1:25,000 scale map of the coseismic surface ruptures following the 30 October 2016 M-w 6.5 Norcia normal-faulting earthquake, central Italy. Detailed rupture mapping is based on almost 11,000 oblique photographs taken from helicopter flights, that has been verified and integrated with field data (>7000 measurements). Thanks to the common efforts of the Open EMERGEO Working Group (130 people, 25 research institutions and universities from Europe), we were able to document a complex surface faulting pattern with a dominant strike of N135 degrees-160 degrees (SW-dipping) and a subordinate strike of N320 degrees-345 degrees (NE-dipping) along about 28km of the active Mt. Vettore-Mt. Bove fault system. Geometric and kinematic characteristics of the rupture were observed and recorded along closely spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, comprising a total surface rupture length of approximately 46km when all ruptures were considered.6381 129 - PublicationOpen AccessA database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy(2018)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ;; ; ; ;; ;; ; ;; ; ;; ; ;; ; ;; ;; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ; ;; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ;; ; ; ; ; ;; ; ; ; ;; ; ; ;; ; ; ;; ;; ; ; ; ; ; ; ; ; ; ;; ;; ; ; ; ;; ;; ; ; ; ;; ; ; ;; ; ; ;; ;; ; ; ;; ; ; ;We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.6434 49 - PublicationOpen AccessQuaternary geology and paleoseismology in the Fucino and L’Aquila basins(2016)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ;; ;; ; ;; ; ; ; ;; ;; ;; ;; This 2 days-long field trip aims at exploring field evidence of active tectonics, paleoseismology and Quaternary geology in the Fucino and L’Aquila intermountain basins and adjacent areas, within the inner sector of Central Apennines, characterized by extensional tectonics since at least 3 Ma. Each basin is the result of repeated strong earthquakes over a geological time interval, where the 1915 and 2009 earthquakes are only the latest seismic events recorded respectively in the Fucino and L’Aquila areas. Paleoseismic investigations have found clear evidence of several past earthquakes in the Late Quaternary to Holocene period. Active tectonics has strongly imprinted also the long-term landscape evolution, as clearly shown by numerous geomorphic and stratigraphic features. Due to the very rich local historical and seismological database, and to the extensive Quaternary tectonics and earthquake geology research conducted in the last decades by several Italian and international teams, the area visited by this field trip is today one of the best studied paleoseismological field laboratories in the world. The Fucino and L’Aquila basins preserve excellent exposures of earthquake environmental effects (mainly surface faulting), their cumulative effect on the landscape, and their interaction with the urban history and environment. This is therefore a key region for understanding the role played by earthquake environmental effects in the Quaternary evolution of actively deforming regions, also as a major contribution to seismic risk mitigation strategies.454 75 - PublicationOpen AccessActive compressional tectonics, Quaternary capable faults, and the seismic landscape of the Po Plain (N Italy)(2012)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Michetti, A.; Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy ;Giardina, F.; Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy ;Livio, F.; Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy ;Mueller, K.; University of Colorado, Department of Geological Sciences, Boulder, CO, USA ;Serva, L.; ISPRA, Dipartimento Difesa del Suolo/Servizio Geologico d’Italia, Rome, Italy ;Sileo, G.; Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy ;Vittori, E.; ISPRA, Dipartimento Difesa del Suolo/Servizio Geologico d’Italia, Rome, Italy ;Devoti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Riguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia ;Carcano, C.; Burren Resources Petroleum Ltd, Baza Burren, Burun Field, Balkanabat, Turkmenistan ;Rogledi, S.; ENI Exploration and Production, San Donato Milanese (Milan), Italy ;Bonadeo, L.; Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy ;Brunamonte, F.; Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy ;Fioraso, G.; Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (CNR), Turin, Italy; ; ; ; ; ; ; ; ; ; ; ; ; It is commonly believed that the Po Plain is an area of low seismic haz- ard. This conclusion is essentially a combination of two factors: (1) the historical record of earthquakes, which shows a relatively small number of events of moderate magnitude, and only two significant earthquakes, which occurred in the Middle Ages; and (2) the lack of ad-hoc research on the geology of earthquakes in this area, as although many studies have highlighted the local Quaternary tectonics, only a very few of them have discussed the observed evidence in terms of seismic hazard. In contrast, the data presented in the present study strongly suggest that the level of earthquake hazard in the Po Plain is comparable to that of the well- known seismic areas of the Apennine range, at least in terms of maxi- mum magnitudes. Indeed, the high population density and the concentration of industrial facilities make the Po Plain today one of the more high-risk areas of the Italian territory. The Po Plain represents the foredeep of two growing mountain belts, the southern Alps and the north- ern Apennines. Recently, modern active tectonics studies have been con- ducted along its margins to the south, along the northern Apennine Piedmont belt, and to the northeast, along the eastern southern Alpine Piedmont belt. However, in the central and western sectors of the Po Plain, where the south-verging western southern Alpine front links up with the north-verging Monferrato, Emilia and Ferrara arcs, the Qua- ternary history of tectonic deformation and faulting are still relatively poorly understood. These lie beneath the relatively flat alluvial surface of the Po River, and provide the evidence for paleoseismicity and the result- ing seismic hazard. In this review, we compile the data from the literature to reassess the style and magnitude of the ongoing crustal deformation and the associated earthquake faulting. This includes detailed informa- tion on historical and instrumental seismicity, extensive subsurface in- formation from the ENI industrial exploration, structural interpretation of three regional seismic reflection profiles, analysis of novel global posi- tioning system data, field mapping at selected key areas, and new paleo- seismological investigations. We show that along the western southern Alpine belt between Lake Garda and Lake Maggiore, the active tectonic setting is characterized by a segmented belt of fault-propagation folds. These are 50 km wide, and are controlled by the growth of out-of-se- quence, 10-to-20-km-long, north and south verging thrusts. Regional global positioning system data show ongoing shortening rates of the order of 1 mm/yr. Quaternary fault slip rates typically range between 0.2 mm/yr and 0.4 mm/yr. Pleistocene shortening is obvious not only along the western southern Alpine outer fronts that are buried beneath the Po Plain, but also along the south Alpine foothills between Brescia and Varese. Similar styles and rates of active folding and thrusting have also been documented along the frontal sector of the northern Apennine arcs, from Torino to Ferrara, and along the base of the Apennine mountain front between Piacenza and Bologna. We selected the Brescia and Como sectors in the western southern Alps and the Monferrato and Mirandola structures in the northern Apennines as examples to illustrate the seismic landscape of the study area, in terms of typical active structural, geo- morphic and paleoseismic features. We argue that the level of earthquake hazard in the Po Plain is comparable to that of the Apennine range. On May 20, 2012, a few days after this review was formally accepted for pub- lication, a M W 5.9 earthquake ruptured the Mirandola structure. The seismic sequence following this mainshock is ongoing, and we have added further information about this event (updated on June 3rd, 2012), which substantially confirms the conclusions arrived at here.918 1073 - PublicationOpen AccessShallow subsurface structure of the 2009 April 6Mw 6.3 L’Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar(2010-06-22)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Roberts, G.; Research School of Earth Sciences, Birkbeck/UCL, University of London ;Raithatha, B.; Research School of Earth Sciences, Birkbeck/UCL, University of London ;Sileo, G.; Universit`a degli Studi dell’Insubria–Sede di Como, Italy ;Pizzi, A.; Dipartimento di Scienze della Terra Universit`a ‘G. d’Annunzio’ Chieti, Italy ;Pucci, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia ;Walker, J. F.; Research School of Earth Sciences, Birkbeck/UCL, University of London ;Wilkinson, M.; Department of Earth Sciences, Durham University, Science Labs, Durham ;McCaffrey, K.; Department of Earth Sciences, Durham University, Science Labs, Durham ;Phillips, R.; Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, ;Michetti, A.; Universit`a degli Studi dell’Insubria–Sede di Como, Italy ;Guerrieri, L.; Geological Survey of Italy, ISPRA–High Institute for the Environmental Protection and Research, Italy ;Blumetti, A. M.; Geological Survey of Italy, ISPRA–High Institute for the Environmental Protection and Research, Italy ;Vittori, E.; Geological Survey of Italy, ISPRA–High Institute for the Environmental Protection and Research, Italy ;Cowie, P.; Institute of Geography, School of GeoSciences, University of Edinburgh, UK ;Sammonds, P.; Research School of Earth Sciences, Birkbeck/UCL, University of London ;Galli, P.; Dipartimento della Protezione Civile Nazionale, Rome, Italy ;Boncio, P.; Dipartimento di Scienze della Terra Universit`a ‘G. d’Annunzio’ Chieti, Italy ;Bristow, C.; Research School of Earth Sciences, Birkbeck/UCL, University of London ;Walters, R.; COMET, Department of Earth Sciences, University of Oxford, Oxford, UK; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica has been investigated with ground penetrating radar to study how the surface rupture relates spatially to previous surface displacements during the Holocene and Pleistocene. The discontinuous surface rupture stepped between en-echelon/parallel faults within the overall fault zone that show clear Holocene/Pleistocene offsets in the top 10 m of the subsurface. Some portions of the fault zone that show clear Holocene offsets were not ruptured in 2009, having been bypassed as the rupture stepped across a relay zone onto a fault across strike. The slip vectors, defined by opening directions across surface cracks, indicate dip-slip normal movement, whose azimuth remained constant between 210◦ and 228◦ across the zone where the rupture stepped between faults. We interpret maximum vertical offsets of the base of the Holocene summed across strike to be 4.5 m, which if averaged over 15 kyr, gives a maximum throw-rate of 0.23–0.30 mm yr–1, consistent with throw-rates implied by vertical offsets of a layer whose age we assume to be ∼33 ka. This compares with published values of 0.4 mm yr–1 for a minimum slip rate implied by offsets of Middle Pleistocene tephras, and 0.24 mm yr–1 since 24.8 kyr from palaeoseismology. The Paganica Fault, although clearly an important active structure, is not slipping fast enough to accommodate all of the 3–5 mm yr–1 of extension across this sector of the Apennines; other neighbouring range-bounding active normal faults also have a role to play in the seismic hazard.211 273